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Numerical analysis of ellipsometric critical adsorption data
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A recent study@Dan S. P. Smith and Bruce M. Law, Phys. Rev. E54, 2727~1996!# presented measurements
of the ellipsometric coefficient at the Brewster angler̄ on the liquid-vapor surface of four different binary
liquid mixtures in the vicinity of their liquid-liquid critical point and analyzed the data analytically for large
reduced temperaturest. In the current report we analyze this (r̄,t) data numerically over the entire range of
t. Theoretical universal surface scaling functionsP6(x) from a Monte Carlo~MC! simulation@M. Smock, H.
W. Diehl, and D. P. Landau, Ber. Bunsenges. Phys. Chem.98, 486~1994!# and a renormalization-group~RG!
calculation@H. W. Diehl and M. Smock, Phys. Rev. B47, 5841~1993!; 48, 6470~E! ~1993!# are used in the
numerical integration of Maxwell’s equations to provide theoretical (r̄,t) curves that can be compared directly
with the experimental data. While both the MC and RG curves are in qualitative agreement with the experi-
mental data, the agreement is generally found to be better for the MC curves. However, systematic discrep-
ancies are found in the quantitative comparison between the MC and experimental (r̄,t) curves, and it is
determined that these discrepancies are too large to be due to experimental error. Finally, it is demonstrated
that r̄ can be rescaled to produce an approximately universal ellipsometric curve as a function of the single
variablej6 /l, wherej is the correlation length andl is the wavelength of light. The position of the maximum
of this curve in the one-phase region, (j1 /l)peak, is approximately a universal number. It is determined that
(j1 /l)peak is dependent primarily on the ratioc1 /P`,1 , where P1(x)>c1x

2b/n for x!1 and
P1(x)>P`,1e

2x for x@1. This enables the experimental estimate ofc1 /P`,150.9060.24, which is sig-
nificantly large compared to the MC and RG values of 0.577 and 0.442, respectively.
@S1063-651X~97!01001-5#

PACS number~s!: 68.10.2m, 64.60.Fr, 05.70.Fh, 82.65.Dp
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I. INTRODUCTION

Critical adsorption occurs at the liquid-vapor or liqui
solid surfaces in a critical binary liquid mixture when th
bulk critical temperatureTc is approached from the one
phase side, and from the two-phase side provided a we
layer does not form. For small reduced temperatu
t5uT2Tcu/Tc!1, the thickness of the adsorption profile
scaled by the diverging bulk correlation lengthj6

5j06t
2n, where the subscript1 (2) will be used to indi-

cate one-phase~two-phase! quantities. LetL andH denote
the two molecular components of the mixture, whereL
(H) represents the pure component with the lower~higher!
density. The local order parameter is defined on the liq
side of the surface (z>0) by

m~z,t !5wL~z,t !2wL~1`,0!, ~1!

wherewL(z,t) is the local volume fraction of theL compo-
nent expressed as a function oft and z, the depth into the
liquid, while wL(1`,0) is the bulk critical volume fraction
For the case in whichL is preferentially adsorbed at th
liquid-vapor surface~which requires that the surface tensio
of L is lower than the surface tension ofH) the critical
adsorption profile scales as@1–5#
551063-651X/97/55~1!/620~17!/$10.00
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m6~z,t !5M2t
bP6S z1ze

j6
D . ~2!

The surface scaling functionsP1(x) andP2(x) have differ-
ent forms, but are both universal. Hereb andM2 are the
usual critical exponent and coefficient of the bulk order p
rameter in the two-phase regionm2(1`,t)5M2t

b. The ex-
trapolation lengthze is nonuniversal and independent ofz.
The surface scaling functions have the limits@3–5#

P6~x!2P6~`!>P`,6e
2x ~3!

for x@1, with P1(`)50 andP2(`)51, and

P6~x!>c6x
2b/n ~4!

for x!1, whereP`,6 and c6 are universal constants. Th
values ofc1 andc2 are dependent through the relation@4#

c1

c2
5S j01

j02
D 2b/n

, ~5!

where the correlation length amplitudes have the unive
ratio @6#

j01 /j02>1.96. ~6!
620 © 1997 The American Physical Society
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TABLE I. Theoretical and experimental values for parameters related to the universal surface scaling functionsP6(x). The asymptotic
power law of Eq.~4! and the exponential decay of Eq.~3! are accurate to within a few percent forx,x1 and x.x2, respectively. The
parametersc6 , P`,6 , *P1 , and*P2 are defined in Eqs.~4!, ~3!, ~7a!, and~7b!, respectively.

x1 x2 c1 c2 P`,1 P`,2 *P1 *P2

Theory RGa 0.5 3 0.717 1.113 1.621 0.20810.0098x b 1.91 1.44
MC c 0.2 1 0.866 1.22 1.5 1.0 2.18 1.97

Interpolationd 0.9460.05 1.2460.05 2.2760.33 1.8460.33

Experiment Opticald 0.95560.08 2.560.5 2.53
Opticale 1.9760.08 1.6560.13

aReference@4#.
bBecause the zeroth-order termP`,250.208 is so small, the first-order correction of 0.0098x has been included.
cReference@5#.
dReference@8#.
eReference@24#.
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Recent theories have provided values forP`,6 andc6 as
well as numerical determinations ofP6(x) in the crossover
region between the limits of large and smallx. Diehl and
Smock @4# have published a renormalization-group~RG!
one-loop calculation forP6(x), while Smock, Diehl, and
Landau@5# have fitted functionsP6(x) to the Monte Carlo
~MC! data of Landau and Binder@7#. In addition, Flöter and
Dietrich @8# have provided universal quantities related
critical adsorption with an interpolation to dimensiond53
from exact calculations ford52 andd54. Table I lists the
values forP`,6 , c6 , and some other relevant paramete
from these three theories. The numbersx1 andx2 are defined
such that the asymptotic forms ofP6(x) given in Eqs.~3!
and~4! hold forx.x2 andx,x1, respectively. The universa
critical adsorption integrals*P6 are defined by

E P15E
0

`

P1~x!dx ~7a!

and

E P25E
0

`

@P2~x!21#dx. ~7b!

These integrals are a scaled measure of the total exces
sorption in the one-phase and two-phase regions. Nume
values for the RG and MC surface scaling functionsP6(x)
in the crossover regionx1,x,x2 are provided in Tables II
and III. The MC numerical values in Table III were calc
lated from the Monte Carlo data reported in Refs.@5# and@7#
by use of the least-squaresB-spline approximation with four
knots in order to provide smooth surface scaling functio
P6(x). The functionsP6(x) from the RG and MC theories
were compared graphically in Ref.@9#.

There is a long list of published experimental studies
critical adsorption at the vapor and solid surfaces of liq
mixtures and at the solid surfaces of pure fluids. The exp
mental probes that have been used include ellipsom
@9–25#, optical reflectivity@26,27#, evanescent wave fluores
cence@28#, volumetry@29#, gravimetry@30#, surface tension
measurements@19,31,32#, and neutron reflectivity@33#. Ev-
ery one of these studies observed that the thickness o
adsorption profile increases dramatically as the mixture
s

ad-
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proachesTc . Furthermore, many of them provided stron
evidence that real systems obey the scaling laws in Eqs.~2!–
~4!. Postulated adsorption profiles that incorporate these s
ing laws have been shown to give reasonable agreement
optical measurements at the vapor and solid surfaces of c
cal liquid mixtures and polymer solutions@13,14#
@15,18,27,34#. The systematic reanalysis of optical data
Liu and Fisher@34# showed that profiles that violate one o
more of these scaling laws have a significantly reduced le
of agreement with the measurements. The analysis of
and Fisher and nearly all of the optical experiments that p
ceded their work concentrated on the one-phase region, l

TABLE II. Numerical values for the surface scaling function
P6(x) in the crossover regionx1<x<x2, obtained from a one-loop
renormalization-group calculation@4#.

x P1(x) x P2(x)

0.5 0.93251 0.5 1.62924
0.6 0.82266 0.6 1.50587
0.7 0.73276 0.7 1.41355
0.8 0.65672 0.8 1.34223
0.9 0.59091 0.9 1.28585
1.0 0.53310 1.0 1.24051
1.1 0.48176 1.1 1.20356
1.2 0.43585 1.2 1.17315
1.3 0.39458 1.3 1.14790
1.4 0.35737 1.4 1.12681
1.5 0.32373 1.5 1.10909
1.6 0.29328 1.6 1.09413
1.7 0.26569 1.7 1.08145
1.8 0.24069 1.8 1.07066
1.9 0.21802 1.9 1.06145
2.0 0.19747 2.0 1.05357
2.1 0.17884 2.1 1.04681
2.2 0.16195 2.2 1.04124
2.3 0.14664 2.4 1.03183
2.4 0.13277 2.6 1.02477
2.6 0.10881 2.8 1.01941
2.8 0.08915 3.0 1.01531
3.0 0.07303
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TABLE III. Numerical values for the surface scaling function
P6(x) in the crossover regionx1,x,x2, obtained from a Monte
Carlo simulation@5#. Typical uncertainties in the values ofP6(x)
are on the order of 1023.

x P1(x) x P2(x)

0.20531 1.926 0.20390 2.824

0.22170 1.836 0.22475 2.696

0.23809 1.755 0.24559 2.581

0.25448 1.684 0.26643 2.478

0.27087 1.620 0.28728 2.387

0.28726 1.563 0.30812 2.305

0.30365 1.514 0.32896 2.232

0.32004 1.465 0.34981 2.167

0.33643 1.427 0.37065 2.108

0.35282 1.381 0.39149 2.054

0.36921 1.342 0.41234 2.005

0.38560 1.304 0.43318 1.961

0.40199 1.268 0.45402 1.920

0.41838 1.233 0.47487 1.882

0.43477 1.200 0.49571 1.848

0.45116 1.168 0.51655 1.816

0.46755 1.138 0.53740 1.787

0.48394 1.108 0.55824 1.760

0.50033 1.080 0.57908 1.735

0.51672 1.054 0.59993 1.710

0.53311 1.028 0.62077 1.687

0.54950 1.003 0.64161 1.665

0.56589 0.980 0.66246 1.643

0.58228 0.957 0.68330 1.622

0.59867 0.936 0.70414 1.601

0.61506 0.915 0.72499 1.582

0.63145 0.895 0.74583 1.562

0.64784 0.877 0.76667 1.544

0.66423 0.858 0.78752 1.526

0.68062 0.841 0.80836 1.509

0.69701 0.824 0.82920 1.493

0.71340 0.808 0.85005 1.477

0.72979 0.793 0.87089 1.461

0.74618 0.778 0.89173 1.447

0.76257 0.763 0.91257 1.432

0.77896 0.749 0.93342 1.419

0.79535 0.736 0.95426 1.406

0.81174 0.723 0.97510 1.393

0.82813 0.710 0.99595 1.381

0.84452 0.697

0.86091 0.688

0.87730 0.673

0.89369 0.661

0.91008 0.649

0.92647 0.637

0.94286 0.626

0.95925 0.615

0.97564 0.604

0.99203 0.593
ing the behavior of the critical adsorption profile in the tw
phase region relatively untested. Because the RG and
theoretical functionsP6(x) were published after these stud
ies, phenomenological functions with multiple adjustable p
rameters that satisfied the scaling equations~2!–~4! were for-
mulated for the optical dielectric profilee(z,t). Flöter and
Dietrich @8# have extracted surface scaling functionsP1(x)
from the ellipsometry critical adsorption experiments of F
denegg and coworkers@14,15# and from the reanalysis o
optical data by Liu and Fisher@34#. These experimenta
P1(x) functions scatter widely relative to one another a
relative to the theoretical functions, particularly in the cros
over regionx;1 between the two asymptotic limits. Thi
could be due to the fact that the profiles were all formula
with multiple adjustable parameters. From these experim
tal profiles they obtained the estimatesc150.95560.08 and
g1.0.7560.15, where the amplitude relation*P6

5g6 /(n2b) gives *P1.2.560.5. The estimates given
here represent the mean value obtained from seven diffe
mixtures, and the uncertainty provided forg1 is one standard
deviation. Flöter and Dietrich were also able to extract th
two-phase functionP2(x) from the ellipsometric data on th
liquid-vapor surface of a critical liquid mixture measured
Hirtz, Lawnik, and Findenegg@14#, from which they ob-
tained g2.0.768, which gives*P2.2.53. This value is
from one mixture only, which again leaves the two-pha
region relatively untested.

The recent neutron reflectivity experiment of Zhaoet al.
@33# on the liquid-vapor surface of a critical binary liqui
mixture verified the scaling of Eq.~4! and measured
b/n50.5560.06, in agreement with the theoretical value
0.52. This experiment provided a more stringent test of
~4! than is possible with optical experiments because
neutron reflectivity signal is primarily sensitive to the powe
law region very near the surface, while optical experime
probe surface structure at greater depths. Dietrich
Schack@35# discussed methods by which the prefactorc1

appearing in Eq.~4! could be measured in a neutron or x-ra
reflectivity experiment, although to our knowledge this h
not been accomplished yet.

Other recent experimental studies on critical adsorpt
include the paper by Desai, Peach, and Franck@38#, which
reported optical reflectivity measurements of the liquid-gla
surface of a critical liquid mixture in the limit where neithe
component is preferentially attracted to the surface. In
recent paper by Caylor and Law@25# ellipsometry was used
to study critical adsorption at the liquid-vapor surface of fi
critical polymer solutions in the one-phase region. Mukh
padhyay, Senanayake, Caylor, and Law@39# are currently
studying critical adsorption in a critical ionic solution.

In a series of papers, Smith and Law@9,21,23,24# reported
the ellipsometric measurements at the liquid-vapor surfac
a function of the reduced temperature for a number of criti
liquid mixtures, with full data sets taken in both the on
phase and two-phase regions. Thebestdata from these pa
pers was presented in Ref.@24# for the critical aniline-
cyclohexane~AC!, isobutyric acid–water~IW!, 2,6 lutidine-
water ~LW!, and nitrobenzene-hexane~NH! mixtures. The
data analysis used in these papers provided strong confi
tion for Eq.~2! in both the one-phase and two-phase regio
and values for the universal integrals*P6 were statistically
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fitted for each mixture. The experimental values determin
for the integrals in Ref.@24# are given in Table I. An impor-
tant shortcoming of this analysis is that its range of valid
is restricted to the ellipsometric data at large reduced t
peraturest*1023, while the data are resolved down
t;1025. The purpose of the current paper is to provide
highly sensitive test of the surface scaling functionsP6(x)
derived in the RG theory and the MC simulation with
analysis of the ellipsometric data for the mixtures AC, IW
LW, and NH that is valid over the entire range of reduc
temperatures. This is acheived by a graphical compariso
this ellipsometric data with ellipsometric curves calculat
numerically @36,37# from the RG and MC surface scalin
functions. The fact that these theoreticalP6(x) functions
have zero adjustable parameters allows a much stronge
than was possible in previous papers@13,14,18,34#, which
were forced to test surface scaling functions with multip
adjustable parameters.

In Sec. II we describe the assumptions used in our ca
lations of the theoretical ellipsometric curves. The theoret
ellipsometric curves are presented in Sec. III and compa
with the experimental data. In Sec. IV it is demonstrated t
the ellipsometric curves can be rescaled such that they
come approximately universal over a certain range, while
explanation for this universal behavior is provided in t
Appendix. Results from Sec. IV are used in Sec. V to ma
an inference on the true value of the universal ra
c1 /P`,1 . Finally, a summary is provided in Sec. VI.

II. THEORETICAL „r̄,t… CURVES

Phase-modulated ellipsometry@40# is a particularly effec-
tive method for probing the order-parameter profile. A p
cedure established by Beaglehole@41# is to moniter the co-
efficient of ellipticity at the Brewster angle, defined by

r̄5Im~r p /r s!uuB, ~8!

where r p and r s are the complex reflection coefficients fo
the two independent polarizations. The coefficientr̄ has con-
tributions from both the static intrinsic profile expressed
Eqs.~1! and ~2! and the thermally generated capillary wa
fluctuations@42#. Marvin and Toiga@43# have shown that for
light reflecting off a surface for which both the thickness
the static intrinsic profile and the amplitude of capillary wa
oscillations are small compared to the wavelength of li
(l5633 nm!, the contributions tor̄ from the capillary waves
and the intrinsic profile are additive. Thus the ellipsomet
measurement on the liquid-vapor surface of a liquid mixt
can be written

r̄5 r̄CW1 r̄ IP , ~9!

wherer̄CW is the capillary wave contribution andr̄ IP is the
intrinsic profile contribution. For thin surface profiles com
pared tol the contribution of the static intrinsic surface pr
file to the ellipsometric coefficientr̄ is described by the
Drude equation@44#
d

-

a

,

of

est

u-
l
d
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e-
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e
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f

t

c
e

r̄ IP52
p

l

Ae~1`,t !1e~2`,t !

e~1`,t !2e~2`,t !

3E
2`

1`@e~z,t !2e~1`,t !#@e~z,t !2e~2`,t !#

e~z,t !
dz,

~10!

wheree(z,t) is the optical dielectric profile of the reflectin
medium. The Drude equation~10! is valid only for surface
profile thicknesses that are thin compared tol. Sincez is
scaled byj in Eq. ~2!, this corresponds toj!l, which oc-
curs far fromTc . For thicker profiles~smaller reduced tem
peratures!, Maxwell’s equations can be solved numerica
@36,37# to derive the (r̄ IP ,t) curve, which would be pre-
dicted from a postulated theoretical static intrinsic profi
e(z,t). The capillary wave contribution will be discusse
below.

In Ref. @24#, (r̄,t) measurements on the liquid-vapor su
face of the critical mixtures AC, IW, LW, and NH wer
presented. Equation~10! was used to derive the nearly exa
result

r̄5 r̄BG2
p

l
f e~ t !~hL2hH!M2j06S E P6 D tb2n, ~11!

wherehL andhH are defined in Eq.~13! below andf e(t) is
the weakly varying function oft defined in Eq.~A4! of Ref.
@9#. The background termr̄BG is also nearly independent o
t. It contains terms from many different contributions@24#
that vary significantly with large changes in temperature,
vary only slightly in the small range of temperatures abo
Tc studied in our experiment. Equation~11! was used to
analyze the data at large reduced temperatures and the
perimental values given in Table I for the universal integr
*P6 were determined.

In the current manuscript, an algorithm for the numeric
integration of Maxwell’s equations is employed to derive R
and MC theoretical (r̄ IP ,t) curves, which can be compare
directly with the data for the mixtures AC, IW, LW, and NH
from Ref.@24# over the entire range of reduced temperatur
The justification for neglecting the capillary wave contrib
tion r̄CW will be provided below. The algorithm of Law an
Beaglehole@37#, which is a modification of the Born and
Wolf algorithm @36#, will be used for the numerical integra
tion. All the numericalr̄ IP values will be calculated with an
accuracy of better than6531026 over the entire range o
reduced temperatures. As a comparison, our experimentr̄
values were measured with a typical uncertainty
231025.

The numerical derivation of a theoretical (r̄,t) curve re-
quires the development of a theoretical optical dielectric p
file e(z,t). We will use the profile developed in Refs.@9,24#,
which we now summarize. The static intrinsic profile at t
liquid-vapor surface of a liquid mixture consists of both
composition profile and the variation of the total numb
density of molecules from its effectively zero value in th
bulk vapor to the much denser bulk liquid value. The co
position profile will be referred to as the critical profile and
confined to the liquid side (z>0) of the surface. It is ex-
pressed quantitatively in terms of the local order parame
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TABLE IV. Nonuniversal bulk parameters required for the analysis of the four critical liquid mixtu
studied in this paper.

Mixture eL
a eH

a M2 j01 ~Å! wL(1`,0) b Tc ~Kelvin! b

AC 2.035 2.5163 1.0360.03c 2.360.2d 0.592 303.04960.003
IW 1.94 1.773 0.78360.03e 3.6360.07f 0.405 299.09960.003
LW 2.217g 1.773 0.93160.007h 2.560.3 i 0.3082 306.57960.004
NH 1.8909 2.4218 0.77060.006j 3.160.4k 0.623 293.10760.004

aReference@51#, except where noted.
bReference@24#.
cReferences@52,53#.
dReferences@52,54#.
eReference@45#.
fReference@52#.
gReference@55#.
hReference@56#.
iReference@57#.
jReferences@53,58#.
kReference@59#.
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m(z,t) defined in Eq.~1! and obeys the critical scaling of Eq
~2!. The total number density profile will be referred to as t
noncritical profile. It becomes very thick as it undergo
critical scaling near theliquid-vapor critical point, but near
the liquid-liquid critical point in our experiment it is only
few molecular layers thick@24,34#.

The local order parameterm(z,t) is commonly converted
to the optical dielectric profilee(z,t) by use of the two-
component Clausius-Mossotti relation@45#

wL~z,t !hL1@12wL~z,t !#hH>h~z,t !, ~12!

where volume changes on mixing, which are typically on
1–2 % for most mixtures, have been neglected. In Eq.~12!
for i5L andH,

h i5
e i21

e i12
, ~13!

e i is the optical dielectric constant of pure liquidi , and

h~z,t !5
e~z,t !21

e~z,t !12
. ~14!

In Ref. @9# the Clausius-Mossotti relation~12! was used to
convert the critical profile expressed in terms of volume fr
tion in Eqs.~1! and ~2! into an optical dielectric profile

e~z,t !5
112@D~z,t !1h~1`,t !#

12@D~z,t !1h~1`,t !#
, z>0, ~15!

where

D~z,t !5~hL2hH!M2t
bFP6S z1ze

j6
D2P6~`!G . ~16!

TabledP6(x) values from the RG and MC theories in th
rangex1,x,x2 are supplied in Tables II and III, respec
tively. To construct the functionsP6(x) over the entire
range 0<x,1`, Eqs.~3! and ~4! were used forx.x2 and
x,x1, respectively, while linear interpolation was used f
s

-

x1<x<x2. The values forx1 andx2 were chosen such tha
the asymptotic functions of Eqs.~3! and~4! agreed to within
a few percent with the numerical values ofP6(x) at x2 and
x1, respectively.

In reality the noncritical profile spans both the liquid an
vapor sides of the surface, but for the sake of simplicity
will be confined to the vapor side (z<0). Since the noncriti-
cal profile is very thin compared to the critical profile, sim
plifying a realistic profile in this manner causes a negligib
change in the profile’s appearance. In Ref.@24# the Fermi
interfacial profile expected in mean-field theory@46# was
modified to give the optical dielectric profile

e~z,t !511
@e~0,t !21#@11e2ze /jv#

11e2~z1ze!/jv
, z<0, ~17!

where the vapor correlation lengthjv scales the noncritica
profile thickness.

Equations~15! and~17! describe the model optical dielec
tric profile that will be used in the numerical integration
Maxwell’s equations. These equations contain many nonu
versal parameters that must be specified for each mixt
The values used foreL , eH , M2 , j01 , andwL(1`,0) are
provided in Table IV. We are relying on literature values f
all of these parameters exceptwL(1`,0). The correlation
length amplitude in the two-phase region,j02 , was deter-
mined by using Eq.~6!. To determineh(1`,t) in Eq. ~15!,
Eqs.~12! and~13! were used withwL(1`,t)5wL(1`,0) in
the one-phase region andwL(1`,t)5wL(1`,0)1M2t

b in
the two-phase region. The surface optical dielectrice(0,t)
can be expressed in terms of the surface volume frac
wL(0,t) using Eqs.~12!–~14!. The extrapolation lengthze
appearing in both Eqs.~15! and~17! can also be expressed i
terms ofwL(0,t) using Eqs.~1! and ~2!. If ze!j6 , the as-
ymptotic power law of Eq.~4! can be used forP6(x) to
provide the analytic result

ze5j06S wL~0,t !2wL~1`,0!

M2c6
D 2n/b

. ~18!
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Outside the applicability of this limit,ze must be determined
from wL(0,t) numerically using linear interpolation on th
values ofP6(x) provided in Tables II and III. This leave
wL(0,t) and jv as the only two unknown quantities in Eq
~15! and ~17!. Two methods of estimatingwL(0,t) will be
discussed below andjv will be left as the only adjustable
parameter in the calculation of the theoretical (r̄,t) curves.

In Ref. @9# it was assumed that the surface layer is p
L, wL(0,t)51. This assumption is plausible because for ea
mixture we have studied the liquid-vapor surface tension
pureH, sH , is considerably larger than the liquid-vapor su
face tension of pureL, sL . In Ref. @24#, wL(0,t) was esti-
mated using a statistical mechanical theory and surface
sion measurements. In the semiempirical theory of Tam
Kurata, and Odani@47#, the liquid-vapor surface tension o
the mixture,s, is related towL(0,t) through the relation

s1/45wL~0,t !sL
1/41@12wL~0,t !#sH

1/4. ~19!

The surface volume fraction is determined by the bulk v
ume fractionwL(1`,t) and the surface tension differenc
sH2sL ,

wL~0,t !

12wL~0,t !
5

wL~1`,t !

12wL~1`,t !
expFa~sH2sL!

kBT
G . ~20!

Here the parametera is the area per molecule at the liquid
vapor surface of the mixture. In Ref.@24# a was approxi-
mated as a constant and was estimated by comparing
surements ofs for the mixtures AC, IW, LW, and NH with
Eqs. ~19! and ~20!. In Table V the values ofsL , sH , and
a that were used in Ref.@24# are provided for each mixture
so thatwL(0,t) can be determined from Eq.~20!.

As discussed above, thetb2n power law forr̄ in Eq. ~11!
holds only for large reduced temperaturest*1023. How-
ever, one would expect the constant termr̄BG in Eq. ~11! to
remain constant ast→0. Any contribution tor̄ that does not
vary significantly over the small temperature range includ
in the interval 1023,t,1021, over which Eq.~11! is valid,
will vary even less in thevery small temperature range o
t,1023.

In Ref. @24# it was shown that the contribution of th
noncritical profile to r̄ is contained in the constant term
r̄BG of Eq. ~11!. Figure 1~a! shows three numerical (r̄,t)
curves for the mixture IW. All three curves were calculat

TABLE V. The second and third columns provide the liqui
vapor surface tensions for pureL andH, whereT is the temperature
in degrees Celsius. The fourth column states the surface are
molecule of the liquid mixture. These values allow the surface v
ume fractionwL(0,t) to be determined for each mixture using E
~20!.

Mixture sL
a sH

a a b

AC 27.6220.1188T 44.8320.1085T 4.50
IW 26.8820.0920T 75.8320.1477T 2.73
LW 33.9120.1159T 75.8320.1477T 1.90
NH 20.4420.1022T 46.3420.1157T 2.50

aReference@60#.
bReference@24#.
e
h
f

n-
a,

-

ea-

d

using the MCP6(x) functions andwL(0,t)51. For the
curves labled 1, 2, and 3 the values used for the noncrit
correlation length werejv53.3, 3.0, and 2.55 Å, respec
tively. Figure 1~b! shows the differenceDr̄ between curves 2
and 3 and between curves 1 and 2, labeled 223 and 122,
respectively. Whiler̄ varies over a range of about 331023

for each of the three curves, the differenceDr̄ for any two of
the curves only varies by about 1025 over the entire reduced
temperature range. This is on the order of the uncertaint
the experimentalr̄ values and is therefore negligible. A
expected, this contribution tor̄BG remains constant a
t→0. The effect of varyingjv is to change the value o
r̄BG and to raise or lower the (r̄,t) curve by a constant value
without changing its shape. In calculating the theoreti
( r̄,t) curves,jv will be adjusted to give the correct value fo

per
l-

FIG. 1. ~a! Semilog plot of three calculations ofr̄, times 1000,
as a function of the reduced temperaturet in both the one-phase an
two-phase regions. The values used for the noncritical correla
length werejv53.3, 3.0, and 2.55 Å for curves 1, 2, and 3, respe
tively. The MC surface scaling functionsP6(x) with the condition
wL(0,t)51 and the parameter values for IW in Table IV were us
in the calculations.~b! The curves labeled 122 and 223 are the
differences inr̄, Dr̄, between curves 1 and 2 and between curve
and 3, respectively, with the one-phase region represented by
solid lines and the two-phase region by the dashed lines.
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626 55SMITH, LAW, SMOCK, AND LANDAU
r̄BG, i.e., the value for which the theoretical (r̄,t) curve is
on approximately the same vertical level as the experime
( r̄,t) curve. The only important comparison we will be ab
to make between the theoretical and experimental (r̄,t)
curves will be of their shapes, not their vertical levels.

For each of the four mixtures, Fig. 2 shows the differen
Dr̄ between a MC theoretical curve calculated w
wL(0,t)51 and a curve calculated withwL(0,t) determined
by Eq. ~20!. All parameters are otherwise the same for t
two curves of each of the four mixtures. In the interv
t,1022 all the curves have a variation inDr̄ on the order of
1024, except for the two-phase curve of LW, which varies
about 531024. The variation of 1024 is larger than in Fig.
1~b!, but is still much too small to affect any of the concl
sions drawn below from comparisons between the theore
and experimental (r̄,t) curves. With the exception of th
two-phase LW curve, switching between the two metho
for determiningwL(0,t) has an effect similar to varying th
value of jv : it merely changes the value ofr̄BG. As dis-
cussed above, the value ofr̄BG for the theoretical (r̄,t)
curves will be adjusted to give agreement with the exp
mental data by adjusting the value ofjv ; this does not affect
the important comparison between theshapesof the theoreti-
cal and experimental curves. All theoretical curves will
calculated withwL(0,t)51 since Eq.~20! complicates the
analysis by introducing the parametersa, sL , andsH . It
should be emphasized, however, that the two-phase
curve in Fig. 1~b! suggests that under certain circumstan
the temperature dependence ofwL(0,t) may have a small bu
non-negligible influence on the shape of the (r̄,t) curve.

The previous discussion has neglected the contribu
due to capillary wave fluctuations, denotedr̄CW in Eq. ~9!. In
Ref. @24# an approximate expression forr̄CW was shown to
have a variation on the order of 1025 over the range

FIG. 2. Semilog plot of the numerically calculated differen
Dr̄, times 1000, as a function of the reduced temperaturet for the
mixtures NH, AC, IW, and LW. The one-phase and two-phase
gions are represented by solid and dashed lines, respectively.
differenceDr̄ is r̄ calculated withwL(0,t)51 minus r̄ calculated
with wL(0,t) determined by Eq.~20!. In both calculations the MC
surface scaling functionsP6(x) were used along with the param
eter values given in Table IV.
al
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t&1022. Thereforer̄CW is yet another approximately con
stant contribution tor̄BG. We will neglectr̄CW, but its con-
tribution will effectively be included inr̄BG by making the
appropriate choice for the single adjustable parameterjv .

III. COMPARISON OF EXPERIMENTAL
AND THEORETICAL „r̄,t… CURVES

In Fig. 3 the experimental (r̄,t) data for the mixtures AC,
IW, LW, and NH are compared with the theoretical RG a
MC curves generated by the numerical analysis describe
Sec. II. The experimental data in the one-phase and t
phase regions are represented by circles and squares, re
tively. The MC curves are represented by solid lines, wh
the RG curves are represented by dashed lines. The pa
eter values given in Table IV were used in the calculation
the theoretical curves, along withwL(0,t)51. In Figs. 3~a!
and 3~c! the MC curves appear to be discontinuous atTc . A
discontinuity is impossible since both the bulk and the s
face phase transitions are continuous. In fact, the one-p
and two-phase region curves were calculated down
t51026 and it was determined thatr̄ is continuous atTc .

As discussed in Sec. II, only the comparison between
shapes of the curves is of importance and the compar
between their vertical levels is not meaningful. The valu
used for the noncritical correlation length were chosen s
that the theoretical curves would be on the same vert
level as the experimental curves. Thejv values used for AC,
IW, LW, and NH, respectively, were 1.7, 3.3, 4.0, and 0.9
for the MC curves and 2.5, 2.1, 1.7, and 2.0 Å for the R
curves. As expected, the noncritical profile is found to
only a few molecular layers thick.

The first impression from Fig. 3 is that the experiment
RG, and MC (r̄,t) curves are in qualitative agreement in a
four graphs. The MC theoretical curves are not in perf
agreement with the experimental data, but they comp
more favorably than the RG curves do. Some past ellip
metric studies of critical adsorption@14,15,34# have found
better agreement of the numerically calculated theoret
curves with the experimental (r̄,t) data. However, these
studies used phenomenological functions forP6(x), which
had several adjustable parameters, while the MC and
surface scaling functions have zero adjustable paramete

Figure 3 provides several comparisons that are more
cific than the observation that the MC curves generally fit
experimental data better than the RG curves do. The
such comparison is that for all four mixtures the chos
value of jv simultaneously placed the one-phase and tw
phase region MC curves on the same vertical level as t
corresponding experimental curves. This simultane
agreement could not be obtained for the RG curves; differ
values ofjv would be needed to give both the one-phase a
two-phase region curves the correct level. It is not clear to
what this infers about the inaccuracy of the RG surface s
ing functions.

A second observation is that in all four graphs of Fig.
the extremum ofr̄ in the one-phase region occurs at
smaller reduced temperature for the experimental curve t
for the RG curve, with the position of the MC curve’s pea
being in between the two. Much of the discussion in Sec.
is relevant to this point, while in Sec. V inferences that c
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FIG. 3. Semilog plots ofr̄, times 1000, as a function of the reduced temperaturet for the critical mixtures~a! AC, ~b! IW, ~c! LW, and
~d! NH. The experimental data are represented by circles in the one-phase region and squares in the two-phase region. Both hor
vertical error bars are provided for all data points for which the error bar separation is larger than the width of the circle or
representing it. The numerical calculations ofr̄ using the MC and RG surface scaling functionsP6(x) are represented by the solid an
dashed lines, respectively. The conditionwL(0,t)51 along with the parameter values given in Table IV were used in the calculations
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be drawn from this observation are carefully considered.
The final specific comparison that we will consider is b

tween the slopes of the curves. Equation~11! indicates that
for large reduced temperatures the slope of ar̄(t) curve is
proportional to the universal integrals*P6 . Closer toTc this
proportionality does not necessarily hold. However, num
cal integration ofP6(x) functions with varying*P6 values
~see Sec. V! have provided a clear conclusion that holds ov
the entire range oft: the greater the value of*P1 or *P2 ,
the more stretched out the (r̄,t) curve is in the vertical di-
rection. The values in Table I indicate that the MC*P6

values are larger than the RG values. Thus it is not surpris
that all the MC curves in Fig. 3 are more stretched out v
tically than the RG curves. The experimental values of b
*P1 and*P2 determined in Ref.@24# and listed in Table I
are in between the RG and MC values. Based on this
would expect all the MC~RG! ( r̄,t) curves to be more~less!
stretched out vertically than the experimental curves. T
trend is followed in Fig. 3, but there are exceptions. T
prediction holds for all the RG curves, with the possib
-

i-

r

g
r-
h

e

is
e

exception of the one-phase curve for NH, which is in go
agreement with the experimental data fort.1023. Three of
the four MC two-phase curves are more stretched out ve
cally than the experimental curves, with AC being the exc
tion. In the one-phase region the MC curves compare v
favorably with the experimental data: the NH curve is t
stretched out vertically and the AC curve is under stretch
while the IW and LW curves are in good agreement w
their corresponding experimental curves. Thus the con
sions that can be drawn by comparing the slope, or ‘‘verti
stretch,’’ of the curves are more or less in line with th
conclusions of Ref.@24#.

To calculate the theoretical curves graphed in Fig. 3,
parameter values provided in Table IV were used, it w
assumed thatwL(0,t)51, and the capillary wave contribu
tion r̄CW was neglected. While the consequences of the la
two approximations were carefully considered in Sec. II,
potential effects of inaccuracies in the measured param
values in Table IV have not been discussed. The uncert
ties in the measured values ofTc are included in the hori-
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628 55SMITH, LAW, SMOCK, AND LANDAU
zontal error bars of the experimental data points in Fig. 3.
address the uncertainties in the measurements of the o
parameters, MC theoretical curves were calculated with
values ofeL , eH , M2 , j01 , andwL(1`,0) increased or
decreased relative to the measured values given in Table
Figures 4~a! and 4~b! show several of these curves for th
mixtures AC and LW. In both figures the curve labeled
was calculated without changing any of the values of
parameters in Table IV. Curve 2 in Fig. 4~b!, which practi-
cally lies on top of curve 1, was calculated for LW wit
wL(1`,0)50.3015. This is below the measured value
almost eight times the value of its uncertainty given in Ta
IV, leading us to the conclusion that the measuremen
wL(1`,0) was precise enough that its possible inaccurac

FIG. 4. Semilog plots ofr̄, times 1000, as a function of th
reduced temperaturet in both the one-phase and two-phase regio
The curves represent numerical calculations ofr̄ using the MC
surface scaling functionsP6(x) and the conditionwL(0,t)51. ~a!
Curves 1, 2, and 3 were calculated using the parameter values g
for the mixture AC in Table IV, with the exceptions ofM251.00
being used for curve 2 andj0152.1 Å being used for curve 3.~b!
Curve 1 was calculated using all the parameter values given fo
mixture LW in Table IV. Curve 2, which practically lays on top o
curve 1, was calculated usingwL(`,0)50.3015. Curves 3 and 4
were calculated usingeH51.766 andj0152.2 Å, respectively.
o
er
e

V.

e

e
f
is

of no concern in the analysis of Fig. 3. Curve 2 of Fig. 4~a!
was calculated with the value ofM2 decreased to 1.00
which is the minimum of the range of uncertainty for th
measured value for AC. The value oft at which the peak of
the one-phase curve occurs,tpeak, has not changed. How
ever, both the one-phase and the two-phase curves are
stretched out vertically, which is predicted at large reduc
temperatures by Eq.~11!. Curve 3 of Fig. 4~b! was calculated
with eH51.766, which is the value of the optical dielectr
constant of water at 50 °C, the maximum temperature
which r̄ was measured for the mixture LW. Again the valu
of tpeakhas not changed, but the curve has been stretched
slightly in the vertical direction. A similar result occurs whe
eL is varied. Curve 3 of Fig. 4~a! and curve 4 of 4~b! were
calculated with the values ofj01 decreased to 2.1 Å for AC
and 2.2 Å for LW, respectively. Equation~5! was used to
determinej02 , so that the correlation length in the two
phase region has decreased proportionally. Figure 4 sh
that j01 is the only parameter that changes the value
tpeakwhen its value is varied. For both AC and LW, decrea
ing the value ofj01 has decreased the value oftpeakand has
caused the curves to be less stretched out vertically.
latter effect is predicted at large reduced temperatures by
~11!.

Figure 4 leads to the following questions. Could it be th
either the RG or MC surface scaling functions are very
curate and the use of incorrect values for the parame
eL , eH , M2 , j01 , andwL(1`,0) in the calculations of the
theoretical (r̄,t) curves are causing a decreased level
agreement with the experimental data in Fig. 3? Is there a
of values for these parameters for each of the four mixtu
that would give good agreement between the experime
( r̄,t) curves and either the RG or MC curves? Would the
sets of parameter values be possible, given the actual m
sured values and their uncertainties?

To answer these questons for the MC one-phase func
P1(x), MC (r̄,t) curves were calculated with the value
j01 being decreased until the value oftpeakmatched the ex-
perimental value. As was pointed out above, this is the o
way to change the value oftpeak. Next the value ofM2 was
adjusted until the shape of the MC one-phase curve matc
the experimental curve shape. Finally, the value ofjv was
chosen, which laid the one-phase MC curve on top of
experimental curve. The final MC (r̄,t) curves are shown
along with the experimental curves for each mixture in Fi
5~a! and 5~b!. Excellent agreement between the one-ph
curves was achieved for all four mixtures fort.tpeak. For
AC this agreement continues throughTc and over the entire
two-phase curve. For IW the agreement between the t
phase curves is poor for large reduced temperatures, w
for LW and NH the agreement ends attpeak. Table VI pro-
vides the values ofj01 , M2 , and jv used in the calcula-
tions. The values used foreL , eH , andwL(1`,0) were un-
changed and are given in Table IV. All four values ofj01

have decreased relative to the values given in Table IV. W
the exception of IW, however, the changes are within
uncertainties of the initial values. The values ofM2 have
changed by 5.7, 0.4, 7.0, and211.7 times the values of the
uncertainties given in Table IV for the mixtures AC, IW
LW, and NH, respectively. It is highly improbable that thre
of the four measured values ofM2 could be so inaccurate.

.

en

he



t

p
It

v

nc
b

ain

he

than
ur
was
eli-
l
ows
r-
RG

To

for

tal

wo-

peri-
nge

ni-
ities
ich
w-
in

ur-

l.
pli-
not

the

e

s
s
he

t

e

n the
t for

rre-
er-

55 629NUMERICAL ANALYSIS OF ELLIPSOMETRIC . . .
Instead of varying the values ofM2 to reach the correc
shapes of the MC curves, the values ofeL or eH could have
been varied. Realistic changes in the values ofM2 and eH
produced curve 2 of Fig. 4~a! and curve 3 of Fig. 4~b!, re-
spectively. The amount of change that these two cases
duced in the shape of the (r̄,t) curves was about the same.
would be necessary to change the values ofeL or eH by
equally improbable amounts in order to obtain the same le
of agreement that is observed in Figs. 5~a! and 5~b!. Thus we
conclude that the MC functionP1(x) is not in quantitative
agreement with our experimental data. We point out o
again, however, that Fig. 3 shows qualitative agreement
tween the behavior of the MC, RG, and experimental (r̄,t)
curves for all four mixtures.

If this method were to be repeated in order to obt
agreement between the one-phase RG (r̄,t) curves and the

FIG. 5. Semilog plots ofr̄, times 1000, as a function of th
reduced temperaturet for the critical mixtures~a! AC and IW and
~b! LW and NH. The experimental data are represented by circle
the one-phase region and squares in the two-phase region. The
lines representr̄ values that were numerically calculated using t
MC surface scaling functionsP6(x), the conditionwL(0,t)51, and
the measured values ofeH , eL , andwL(`,0) given in Table IV.
The values used forj01 and M2 were chosen to give the bes
possible agreement between the one-phase theoretical (r̄,t) curves
and the experimental data.
ro-

el

e
e-

experimental data, the changes in the values ofM2 and
j01 would be even more improbable. This is proven by t
following argument. Figure 3 shows that thetpeak values for
the RG curves would have to be decreased even more
was necessary for the MC curves. This would require all fo
j01 values to be decreased by a greater amount than
necessary for the MC curves, thus increasing the unlik
hood. A decrease in the value ofj01 causes a theoretica
curve to become less stretched out vertically. Figure 3 sh
that the RG (r̄,t) curves are initially less stretched out ve
tically than the MC curves, and the larger decrease in the
values forj01 would increase this disparity. For the MC
curves of the mixtures AC, IW, and LW, theM2 values had
to be increased in order to stretch the (r̄,t) curves out verti-
cally to match the shapes of the experimental curves.
achieve this agreement the RG values ofM2 would have to
be increased by even larger, more improbable amounts
these three mixtures. Thus the RG functionP1(x) is also
clearly not in quantitative agreement with our experimen
data.

Such clear conclusions cannot be reached for the t
phase theoretical MC and RG functionsP2(x). Without an
extremum in the two-phase (r̄,t) curves, there is nothing
analogous totpeak, which requires a unique value ofj02 in
order to reach agreement between the theoretical and ex
mental curves. This agreement could be reached with a ra
of values ofj02 andM2 .

IV. UNIVERSAL ELLIPSOMETRIC CURVES

There are many well-known examples@48# in which a
universal bulk scaling law is the underlying cause of a u
versal experimental curve, where measured bulk quant
have been rescaled in order to provide a graph in wh
different data sets all fall on a single universal curve. Ho
ever, we are unaware of any examples in the literature
which a universal experimental curve is the result of a s
face scaling law such as Eq.~2!. Although the scaling in Eq.
~2! has a dramatic effect on the behavior ofr̄ for measure-
ments of critical adsorption, rescaling the (r̄,t) data in order
to achieve a universal ellipsometric curve is far from trivia
This is due to the fact that ellipsometry measures a com
cated integral of the surface composition profile that can
be expressed analytically except in certain limits@e.g., Eq.
~10!#. In this section we examine a method of rescaling

in
olid

TABLE VI. Values used in the numerical calculations of th
( r̄,t) MC theoretical curves graphed in Figs. 5~a! and 5~b!. These
values were chosen to give the best possible agreement betwee
one-phase MC curves and the experimental data. See the tex
details. The value given in parenthesis after eachj01 andM2 entry
states the difference between the value of this entry and the co
sponding measured value given in Table IV, in units of the unc
tainty of the measured value.

Mixture j01 ~Å! M2 jv ~Å!

AC 2.2 ~20.5! 1.20 ~5.7! 1.3
IW 3.4 ~23.3! 0.795~0.4! 3.0
LW 2.1 ~21.3! 0.98 ~7.0! 2.5
NH 2.8 ~20.75! 0.70 ~211.7! 2.8
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FIG. 6. log-log plots ofr̄N @defined in Eq.~21!# as a function ofj/l for each of the four mixtures, as labeled on the graphs.~a! MC and
~b! RG theoretical curves are shown in both the one-phase and two-phase regions. The experimental curves are shown in the~c! one-phase
and ~d! two-phase regions, along with the MC and RG curves of the mixture AC for comparison.
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( r̄,t) data in order to produce an experimental curve tha
approximately universal. In the Appendix we provide an e
planation of how this approximately universal curve is t
result of the surface scaling law in Eq.~2!.

Whenr̄2 r̄BG is plotted as a function oft, the curve in the
one-phase region always has an extremum. Sincer̄BG is
nearly a constant, this fact can be seen in Figs. 3~a!–3~d!.
The value ofr̄2 r̄BG at the extremum and its position will b
denoted (r̄2 r̄BG)peakandtpeak, respectively. There is a larg
range in the values of both (r̄2 r̄BG)peakandtpeakfor the four
liquid mixtures, regardless of whether the experimental, M
or RG curves are being compared. However, ifr̄2 r̄BG is
normalized by its extremum value in the one-phase regio

r̄N5
r̄2 r̄BG

~ r̄2 r̄BG!peak
, ~21!

and r̄N is plotted as a function ofj/l rather thant, the
resultant curve is approximately universal in both the o
phase and two-phase regions. This is shown for the MC
is
-

,

,

-
d

RG theoretical curves in Figs. 6~a! and 6~b!, respectively. In
both figures there is a small~but definitely resolved! spread
between the curves of the four mixtures forj1 /l
,(j1 /l)peak, where (j1 /l)peak is the value ofj1 /l at the
extremum in the one-phase region. This spread beco
larger forj1 /l.(j1 /l)peakin the one-phase region. This i
also observed for the one-phase experimental data in
6~c!. While the theoretical two-phase (r̄N ,j2 /l) curves in
Figs. 6~a! and 6~b! are also approximately universal, Fig
6~d! shows that the experimental curves are quite spread
in the two-phase region. This large spread is discus
briefly in the Appendix, but its cause is not understood. T
MC and RG curves of the mixture AC are also plotted
Figs. 6~c! and 6~d! for comparison.

In the one-phase region bothr̄N and the functiong3 dis-
cussed in the Appendix are equal tor̄2 r̄BG divided by a
constant. Thus the maxima ofr̄N andg3 occur at the same
value ofj1 /l, denoted (j1 /l)peak. The only clear conclu-
sion that can be reached from the graphical comparison
Figs. 6~c! and 6~d! is that the values of (j1 /l)peakare largest
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55 631NUMERICAL ANALYSIS OF ELLIPSOMETRIC . . .
for the experimental curves, smallest for the RG curves,
in between for the MC curves. The MC, RG, and experim
tal values of (j1 /l)peak are given in Table VII for each
mixture. The differences between the MC values
(j1 /l)peak for the different mixtures are definitely rea
rather than being due to a lack of numerical precision. Thi
also true for the RG values. Thus (j1 /l)peak is nearly, but
not exactly, a universal number.

It was noted in a preliminary report@25# that the
( r̄N ,j1 /l) curves and the value of (j1 /l)peakare approxi-
mately universal when applied to a homologous series
critical polymer solutions. In this preliminary report es
mates were obtained for the correlation length amplitu
(j01) and the polymer index (n) that occur in the expressio
for the correlation length of a critical polymer solution,

j5j01N
nt2n, ~22!

whereN is the polymer chain length.
The mean values of (j1 /l)peak for the RG and MC theo-

ries and for the experimental data are given with errors
one standard deviation in Table VII. These mean values p
vide a clear contrast between the two theories and the ex
mental data. This strong contrast is essential to the validit
the conclusions in Sec. V.

V. INFERENCE ON THE VALUE OF THE RATIO c1 /P`,1

In Sec. IV it was observed that (j1 /l)peak is approxi-
mately a universal number, i.e., that its value varies o
slightly with changes in the nonuniversal parameterseL ,
eH , wL(1`,0), M2 , and j06 . Furthermore, it was ob
served that the values of (j1 /l)peak are smaller for the RG
curves than the MC curves and are considerably smaller
the MC curves than for the experimental curves. What d
this imply about the inaccuracies of the RG and MC surfa
scaling functionsP1(x)? One of the observations in Sec. I
provides a hint. It was observed that the values oftpeak for
the numerically integrated (r̄,t) curves change negligibly
whenM2 is varied without changing the value ofj01 or the
other nonuniversal parameters. From Eq.~2! it can be noted
that in the one-phase region varyingM2 is equivalent to
holdingM2 constant while varying the surface scaling fun
tion P1(x) by a multiplicative factor that is independent
x. This implies that ifP`,1 andc1 appearing in Eqs.~3! and

TABLE VII. MC, RG, and experimental values of (j1 /l)peak
for each mixture. The mean value for the four mixtures is provid
in the final row, with an uncertainty of one standard deviation. T
uncertainties of the theoretical determinations for each mixture
all approximately 0.0005, while the experimental uncertainties
approximately 0.01.

Mixture MC RG Experiment

AC 0.0564 0.0480 0.060
IW 0.0602 0.0518 0.067
LW 0.0562 0.0492 0.078
NH 0.0607 0.0516 0.075

Mean 0.058460.0024 0.050260.0019 0.07060.008
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~4! are varied such that the ratioc1 /P`,1 remains constant,
the values oftpeak and (j1 /l)peak for each mixture change
negligibly. In this section we will show that (j1 /l)peak is
primarily dependent on the value ofc1 /P`,1 and that this
fact can be used to make an inference on the value
c1 /P`,1 .

The MC and RG theoreticalP1(x) functions offer only
two values for the ratioc1 /P`,1 . To thoroughly test the
dependence of (j1 /l)peak on c1 /P`,1 , we will use a phe-
nomenological functionP1(x) that allowsc1 andP`,1 to
be varied arbitrarily. The function we will use for this pu
pose is Liu and Fisher’s ‘‘power law-exponential’’ profil
@34#

P1~x!5c1F1x1S c1

P`,1
D 2n/bGb/n

e2x. ~23!

The notation in Eq.~23! differs somewhat from Liu and
Fisher’s notation and has been chosen so that Eq.~23! is
consistent with Eqs.~3! and~4!. This profile may or may not
be accurate enough to provide quantitatively correct (r̄,t)
curves, but we see no reason why it should not provide qu
tatively correct conclusions on the dependence
(j1 /l)peak on the ratioc1 /P`,1 . Figure 7 shows a plot of
the peak position (j1 /l)peak versusc1 for nine different
( r̄,t) curves calculated using the nonuniversal parame
values given in Table IV for the mixture IW and Liu an
Fisher’s surface scaling function in Eq.~23!. The nine data
points in Fig. 7 are grouped into three sets of three, with e
set having a differentc1 /P`,1 value. The three data point
in each set are joined by a line and are labeled by their va
of c1 /P`,1 . The graph shows that (j1 /l)peak is nearly in-
dependent ofc1 as long asc1 /P`,1 is held constant, but
changing the value ofc1 /P`,1 changes the value o
(j1 /l)peak significantly. More specifically, (j1 /l)peak in-
creases whenc1 /P`,1 is increased.

d
e
re
e

FIG. 7. Position of the maximum in the one-phase region of
universal ellipsometric curve, plotted as a function ofc1 . The
(j1 /l)peak values were calculated for the mixture IW using th
phenomenological surface scaling function given in Eq.~23!. The
calculated @c1 ,(j1 /l)peak# pairs are represented by3 ’s. The
@c1 ,(j1 /l)peak# pairs that were calculated with the same value
c1 /P`,1 are connected by a line and the value ofc1 /P`,1 is given
beside the line.
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In Fig. 8 the peak position (j1 /l)peak is plotted as a
function of c1 /P`,1 for a large number of numerically in
tegrated (r̄,t) curves. The four squares and four triangl
represent calculations for each of the four mixtures using
RG and MC scaling functionP1(x), respectively. The
middle and outer dashed lines represent the experime
value of (j1 /l)peak50.070 and its range of uncertainty o
0.07060.008. The 16 crosses, clustered around the exp
mental value of (j1 /l)peak50.070, represent four calcula
tions for each of the four mixtures using the phenomenolo
cal scaling function in Eq.~23!. The 4 crosses for eac
mixture form a diagonal line that is approximately parallel
the solid line in the graph. There is a significant variation
the value of (j1 /l)peakwhen the same value ofc1 /P`,1 is
used for the four mixtures. As discussed in Sec.
(j1 /l)peak is approximately, but not exactly, a univers
number. Despite this fact, the general trend is clear in Fig
(j1 /l)peak increases asc1 /P`,1 increases, regardless o
whether the RG, MC, or phenomenological profile is used
the calculation. The graph suggests that the RG and
values forc1 /P`,1 are both too low. In order to quantify
this, linear regression was used to fit all 24 data points in F
8 ~including the points calculated using the RG, MC, a
phenomenological profiles! to the relationship

S j1

l D
peak

5a1bS c1

P`,1
D . ~24!

This linear relationship is suggested by Fig. 8, where a lin
formed by the four points calculated for each mixture us
the phenomenological profile. Because we have no kno
edge of the actual relationship between (j1 /l)peak and

FIG. 8. Calculated peak position of the one-phase ellipsome
curve (j1 /l)peak as a function of the ratioc1 /P`,1 . The four
squares and four triangles represent calculations for each of the
mixtures using the RG and MC scaling functionsP1(x), respec-
tively. The 163 ’s represent four calculations for each of the fo
mixtures using the phenomenological profile in Eq.~23!. The
middle dashed line represents the experimental value
(j1 /l)peak50.070, while the outer two dashed lines represent
range of uncertainty 0.07060.008. The solid line represents a line
regression fit to all 24 of the calculated data points in the grap
e
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c1 /P`,1 , we have no justification for considering a mat
ematical model that is more complicated. The parameter
ues obtained from the fit to the data points shown in Fig
are a50.03460.002 andb50.04060.003 and Eq.~24! is
represented by the solid line in the figure. Equation~24! can
be inverted to provide the relationship

S c1

P`,1
D5A1BS j1

l D
peak

, ~25!

whereA520.8360.07 andB52562. If the experimental
value of (j1 /l)peak50.07060.008 is used in Eq.~25!, one
obtains

S c1

P`,1
D50.9060.24. ~26!

The uncertainty in this determination contains contributio
from both the uncertainty of the experimental value
(j1 /l)peak and the uncertainties ofA andB. The latter two
uncertainties are a result of the calculated points in Fig
being spread out around the solid line, which, in turn, is d
to the small dependence of (j1 /l)peak on the nonuniversa
mixture parameters.

Our experimental estimate in Eq.~26! is surprisingly large
in comparison to the MC and RG values ofc1 /P`,1
50.577 and 0.442, respectively. We add the caution that
determined value in Eq.~26! could be different if an alterna
tive phenomenological profile were to be used in place of
~23!. This has not been checked because the procedure
determiningc1 /P`,1 from a phenomenological profile out
lined above requires considerable computational effort. I
interesting to note that in their analysis of the data from th
optical experiments, Liu and Fisher@34# estimated an even
larger value ofc1 /P`,1.1.18. We are unaware of any othe
existing theoretical or experimental determinations of t
ratio in the literature.

VI. SUMMARY

We have analyzed the ellipsometric data presented in R
@24#, which was measured on the liquid-vapor surface of fo
different binary liquid mixtures in the vicinity of their liquid-
liquid critical point. Various theoretical universal surfac
scaling functionsP6(x) were used in the numerical integra
tion of Maxwell’s equations to provide theoretical (r̄,t)
curves that could be compared directly with the experimen
data in both the one-phase and two-phase regions and
the entire range of reduced temperatures. Both the MC
face scaling functions of Smock, Diehl, and Landau@5# and
the RG functions of Diehl and Smock@4# provided (r̄,t)
curves that were in qualitative agreement with the exp
mental data. The MC curves were generally found to be
better quantitative agreement with the data than the
curves. However, systematic discrepancies were found in
quantitative comparison between the MC and experime
( r̄,t) curves, and it was determined that these discrepan
are too large to be due to experimental error.

It was demonstrated thatr̄ could be rescaled to provid
the quantitiesr̄N and g3, defined in Eqs.~21! and ~A4!,
respectively, which are universal~or approximately univer-
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sal! functions of the single variablej6 /l for j6 /l!1. Both
r̄N andg3 possess a maximum in the one-phase region
their maxima have the common position (j1 /l)peak. The
values of (j1 /l)peak are given for the MC and RG theorie
and for the experimental data in Table VII, where it can
noted that (j1 /l)peak is approximately, but not exactly,
universal number. The value of (j1 /l)peakprovides a strong
contrast between the RG, MC, and experimental ellipsom
ric curves. Finally, it was determined that (j1 /l)peak is pri-
marily dependent on the ratioc1 /P`,1 , where the func-
tional relationship is depicted in Fig. 8. This enabled us
obtain the experimental estimate ofc1 /P`,150.9060.24.
This can be compared with Liu and Fisher’s@34# experimen-
tal estimate of 1.18 and with the determinations of 0.577
0.442 from the MC and RG theoretical studies, respectiv

In closing we note that it would be worthwhile to repe
this ellipsometric study while varying the wavelength
light, especially at longer wavelengths where the criti
scattering from the bulk would be less. This would provi
an alternative route to testing the universality of ther̄N
curves, which are predicted to scale asj/l. It would also
assist us in deducing a more accurate experimental dete
nation of the ratioc1 /P`,1 .
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APPENDIX: EXAMINATION OF THE CAUSE OF THE
UNIVERSAL ELLIPSOMETRIC CURVES

In Sec. IV it was demonstrated that whenr̄N , defined in
Eq. ~21!, is plotted as a function ofj/l, the resultant curve is
approximately universal in both the one-phase and two-ph
regions. In Figs. 6~a!–6~d!, graphs of (r̄N ,j/l) are pre-
sented. In this appendix we outline an explanation for w
these curves are approximately universal.

In theory, the coefficient of ellipticityr̄ can be deter-
mined from the optical dielectric profile of the surface bei
studiede(z,t) by solving Maxwell’s equations. This solutio
of r̄ would, in general, be a function of integrals of functio
of e(z,t), with the variable of integration beingz/l. Equa-
tion ~10! and the more specific Eq.~11!, which hold only
when j!l, provide examples of such a solution. It can
noted from Eqs.~12!–~16! thate(z,t) for z.0 is a universal
function of the variables (hL2hH)M2t

b, e(1`,t), and
(z1ze)/j6 for the critical liquid mixtures we are studying
As discussed in Sec. II,r̄2 r̄BG is not expected to have
dependence on the parameterze nor on the noncritical
profile @e(z,t) for z,0#. Thus we expectr̄2 r̄BG to be
a universal function of the variables (hL2hH)M2t

b,
X25e(1`,t), andX35j6 /l. The variableX3 is a result
of the integration of functions ofe(z,t) with respect to
z/l and the dependence ofe(z,t) on z/j6 . By noting
that (hL2hH)M2t

b5(X1X3
2b/n)/c6 , where X15c6(hL

2hH)M2(j06 /l)b/n, it can be seen thatr̄2 r̄BG is a uni-
versal function ofX1, X2, andX3 @49#. Equation~11! be-
comes a more transparant example of this if it is rewritten
d
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r̄2 r̄BG52pS *P6

c6
DX1g2~X2!X3

12b/n , X3!1,

~A1!

where g2(X2)5 f e(t) is a universal function of X2
5e(1`,t).

The parametershL andhH , defined in Eq.~13!, are func-
tions of onlyeL andeH , respectively. We have neglected th
small temperature dependence ofeL and eH , so thatX1 is
independent oft for the theoretical calculations. Equation
~12!–~14! indicate that the bulk liquid optical dielectric con
stante(1`,t) is a function ofeL , eH , andwL(1`,t) only.
In the one-phase region,wL(1`,t)5wL(1`,0), so thatX2
is also independent oft. The values ofX1 andX2 are differ-
ent for each mixture, but in the one-phase region
( r̄2 r̄BG,t) curve for a given mixture can alternatively b
expressed as a (r̄2 r̄BG,X3) curve, withX1 and X2 being
constant. In the two-phase region,X2 varies weakly as a
function of t.

In Eq. ~A1!, r̄2 r̄BG is separable,

r̄2 r̄BG5g1~X1!g2~X2!g3~X3!, ~A2!

whereg1, g2, andg3 are universal functions. Equation~A1!
holds only in the limitX3!1, but imposes no restrictions o
the values ofX1 and X2. If one postulates thatr̄2 r̄BG is
separable as in Eq.~A2! for the entire range ofX1, X2 and
X3 values, then the functionsg1(X1)52X1 and
g2(X2)5 f e(t), which can be identified in Eq.~A1!, must
hold for all values ofX1, X2, andX3. Furthermore, the pos
tulate implies that r̄ can be rescaled to giveg3(X3)
5( r̄2 r̄BG)/g1(X1)g2(X2), which is a universal function of
the single variableX35j6 /l. Equation~A1! implies that

g3~j6 /l!5pS *P6

c6
D ~j6 /l!12b/n,

j6

l
!1. ~A3!

Expressing the above definition ofg3 in terms of the physical
quantities provides the result

g3~j6 /l!5
r̄2 r̄BG

c6 f e~ t !~hL2hH!M2~j06 /l!b/n , ~A4!

which we use to calculateg3 for each mixture. In the one
phase region, wheree(1`,t) and thusf e(t) are independen
of t, g3 is merely r̄2 r̄BG divided by a nonuniversal con
stant. In the two-phase region, however,f e(t) varies weakly
with t. In Figs. 9~a! and 9~b!, g3 is plotted as a function of
j6 /l for the MC and RG calculations in the one-phase a
two-phase regions. Since the graphs are log-log plots,
curves follow a straight line with a slope of 12b/n in the
range ofj/l over which Eq.~A3! is valid. In this range the
calculatedg3(j/l) functions are universal, i.e., the curve
for each of the four mixtures fall on top of each other in bo
the one-phase and two-phase regions. For larger value
j6 /l, theg3 curves begin to deviate from a straight line a
the curves of the four mixtures simultaneously begin to se
rate. This nonuniversality ofg3(X3) proves thatr̄2 r̄BG is
not separable as in Eq.~A2!, except over the range of appl
cability of Eq. ~A1!.
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FIG. 9. log-log plots ofg3 @defined in Eq.~A4!# as a function ofj/l for each of the four mixtures, as labeled on the graphs.~a! MC and
~b! RG theoretical curves are shown in both the one-phase and two-phase regions. The experimental curves are shown in the~c! one-phase
and ~d! two-phase regions, along with the MC and RG curves of the mixture AC for comparison.
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Figures 9~c! and 9~d! show log-log plots ofg3 versus
j6 /l for the experimental data in the one-phase and tw
phase regions, respectively. The AC curves from the
theories are also shown for comparison. Unlike the theor
cal curves, the experimental curves do not fall on top of e
other forj6 /l!1. However, just like the theoretical curve
the experimental curves are linear with the expected slop
12b/n for small values ofj/l. This indicates that the ex
perimental data are obeying the functional form of Eq.~A3!,
except that there is a range of values for the prefac
p(*P1 /c1) and p(*P2 /c2) for the four different mix-
tures. The factor ofc6 in the denominator@49# is present
only because the experimental data were divided by it w
g3 was calculated using Eq.~A4!. Since the MC values for
c6 were used in this division for all four mixtures, the a
parent spread in the values forp(*P6 /c6) in Figs. 9~c! and
9~d! actually indicates a spread in the*P6 values. Equiva-
lent conclusions were reached in Ref.@24#, where Eq.~11!,
which is equivalent to Eq.~A3!, was shown to provide a
good fit to the experimental data with the expected value
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b2n for j6 /l!1. However, there was a large spread in t
fitted values for both*P1 and*P2 . In both Ref.@24# and
Figs. 9~c! and 9~d!, the apparent spread in the*P6 values
could have been caused by inaccuracies in the measured
ues ofeL , eH , wL(1`,0),M2 , andj06 . Of these param-
eters, thej06 values are measured with the least precisi
This issue is unresolved.

In the one-phase region, bothg3 and r̄N are obtained by
dividing r̄2 r̄BG by a nonuniversal constant. Forg3 this con-
stant is a known function ofeL , eH , wL(1`,0), M2 ,
j06 , andl. For r̄N , however, (r̄2 r̄BG)peak is determined
graphically and its dependence on the nonuniversal par
eters is unknown. In the two-phase regionr̄N is still obtained
by dividing r̄2 r̄BG by a constant, whileg3 is obtained by
dividing r̄2 r̄BG by a weaklyt-dependent quantity.

Figures 6~a! and 6~b! provide log-log graphs ofr̄N as a
function of j/l for the MC and RG calculations in both th
one-phase and two-phase regions. These curves are simi
the curves ofg3 in Figs. 9~a! and 9~b! in that they are uni-
versal and follow a straight line forj/l!1, with the curves
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of the four mixtures separating for larger values ofj/l. They
are dissimilar in that the curves ofg3 for the four mixtures in
Figs. 9~a! and 9~b! lay precisely on top of each other over
range of smallj/l values, while ther̄N curves for the four
mixtures in Figs. 6~a! and 6~b! have a small spread in thi
range. Also Figs. 9~a! and 9~b! show that the peak value o
g3 in the one-phase region varies slightly from mixture
mixture, while the peak value ofr̄N is one for all of the
mixtures by definition. These differences eliminate the p
sibility that (r̄2 r̄BG)peak is exactly proportional to the one
phase value ofc1 f e(t)(hL2hH)M2(j01 /l)b/n appearing
in Eq. ~A4!, with the proportionality constant being unive
sal. It is apparent, however, that the proportionality const
between (r̄2 r̄BG)peak andc1 f e(t)(hL2hH)M2(j01 /l)b/n

is approximatelyuniversal. In Fig. 9~a!, for example, the
maxima of IW and NH in the one-phase region are sligh
greater than the maxima of AC and LW. If all four of the
curves were divided by their respective maximum value,
curves would be shifted down without changing shape s
that the new values for all four maxima would be one. Sin
the IW and NH curves would be shifted down slightly mo
than the other two, their curves in the linear (j/l!1) region
would end up slightly below the AC and LW curves. This
exactly the situation in Fig. 6~a!. Thus we conclude thatr̄N is
approximately universal forj/l!1 in the one-phase regio
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for two reasons: first, becauseg3 is exactly universal in this
range and, second, because the maximum value ofg3 in the
one-phase region is approximately universal. In additi
r̄N is approximately universal in the two-phase region for t
above reasons and becausef e(t) varies only weakly witht.
We have noted that (r̄2 r̄BG)peak is approximately propor-
tional to c1 f e(t)(hL2hH)M2(j01 /l)b/n, but can a more
accurate relationship between (r̄2 r̄BG)peak and the nonuni-
versal parameters be derived? Our attempts have failed.

A major advantage ofr̄N overg3 can be seen in Fig. 6~c!,
which provides a log-log plot of the experiment
( r̄N ,j1 /l) curves in the one-phase region, along with t
MC and RG curves of the mixture AC for comparison. He
finally, is a universal experimental ellipsometric curve, w
the data for the four mixtures lying on top of each other
j/l!1 @50#. Perhaps the inaccuracies in the values
c1 f e(t)(hL2hH)M2(j01 /l)b/n that were used are separa
ing the curves in Figs. 9~c! and 9~d!, while (r̄2 r̄BG)peak is
known more accurately because it was determined from
ellipsometric data rather than the measured values ofeL ,
eH , wL(1`,0), M2 , andj06 . This does not explain Fig
6~d!, however, which shows that the experimen
( r̄N ,j2 /l) curves are quite spread out in the two-phase
gion. We do not yet understand the cause of the large sp
in the experimental curves in Fig. 6~d!.
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