PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997
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A recent studyfDan S. P. Smith and Bruce M. Law, Phys. Re\64& 2727(1996] presented measurements
of the ellipsometric coefficient at the Brewster anglen the liquid-vapor surface of four different binary
liquid mixtures in the vicinity of their liquid-liquid critical point and analyzed the data analytically for large
reduced temperaturés In the current report we analyze thig,f) data numerically over the entire range of
t. Theoretical universal surface scaling functidghs(x) from a Monte CarldMC) simulation[M. Smock, H.
W. Diehl, and D. P. Landau, Ber. Bunsenges. Phys. Cl88m86(1994] and a renormalization-groufrG)
calculation[H. W. Diehl and M. Smock, Phys. Rev. &7, 5841(1993; 48, 647QE) (1993] are used in the
numerical integration of Maxwell's equations to provide theoretigat)( curves that can be compared directly
with the experimental data. While both the MC and RG curves are in qualitative agreement with the experi-
mental data, the agreement is generally found to be better for the MC curves. However, systematic discrep-
ancies are found in the quantitative comparison between the MC and experimgmjatigrves, and it is
determined that these discrepancies are too large to be due to experimental error. Finally, it is demonstrated
thatp can be rescaled to produce an approximately universal ellipsometric curve as a function of the single
variableé.. /N, where¢ is the correlation length and is the wavelength of light. The position of the maximum
of this curve in the one-phase regiof, (/\) peak. IS @approximately a universal number. It is determined that
(¢4 /\)peak is dependent primarily on the rati@, /P, ., where P,.(X)=c,x A" for x<1 and
P.(x)=P. .e * for x>1. This enables the experimental estimatecof/ P.. . =0.90+0.24, which is sig-
nificantly large compared to the MC and RG values of 0577 and 0.442, respectively.
[S1063-651%97)01001-5

PACS numbegps): 68.10—m, 64.60.Fr, 05.70.Fh, 82.65.Dp

I. INTRODUCTION

z+z,
mi(z,t)=M_tBPi( z ) 2
Critical adsorption occurs at the liquid-vapor or liquid- -

solid surfaces in a critical binary liquid mixture when the The surface scaling functior, (x) andP_(x) have differ-
bulk critical temperatureT, is approached from the one- ent forms, but are both universal. Hefeand M _ are the
phase side, and from the two-phase side provided a wettingsyal critical exponent and coefficient of the bulk order pa-
layer does not form. For small reduced temperaturesameter in the two-phase regiom (+,t)=M_t%. The ex-
t=|T—T|/Tc<1, the thickness of the adsorption profile is trapolation lengtrz, is nonuniversal and independent of

scaled by the diverging bulk correlation lengtfi.  The surface scaling functions have the linfigs-5]
=¢9+t7 7, where the subscript (—) will be used to indi-

cate one-phaséwo-phasg quantities. Let. andH denote P.(X)—Pi(®)=P, . (©)]
the two molecular components of the mixture, whére )

(H) represents the pure component with the logreghey  for x>1, with P () =0 andP_(«~)=1, and

density. The local order parameter is defined on the liquid P e BV 4
side of the surfacez&=0) by +(X)=CX @

for x<1, whereP., . andc. are universal constants. The

m(z,t)= ¢ (z,t) — ¢ (+2,0), @) values ofc, andc_ are dependent through the relatiet
where g, (z,t) is the local volume fraction of the compo- cy (&) P
nent expressed as a function iolind z, the depth into the c & ) 6)

liquid, while ¢, (+,0) is the bulk critical volume fraction.
For the case in which. is preferentially adsorbed at the where the correlation length amplitudes have the universal
liquid-vapor surfacéwhich requires that the surface tension ratio [6]

of L is lower than the surface tension of) the critical

adsorption profile scales §&-5] Eoy 1€9-=1.96. (6)
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TABLE I. Theoretical and experimental values for parameters related to the universal surface scaling fithotignsThe asymptotic
power law of Eq.(4) and the exponential decay of E(R) are accurate to within a few percent e x; and x>x,, respectively. The
parameters. , P, ., [P, , andfP_ are defined in Eqg4), (3), (7a), and(7b), respectively.

X1 Xo (o c_ P+ P - P, JP_
Theory RG? 0.5 3 0.717 1.113 1.621  0.268.009%° 1.91 1.44
MC ¢ 0.2 1 0.866 1.22 1.5 1.0 2.18 1.97
Interpolationd 0.94+0.05 1.24-0.05 2.27-0.33 1.84-0.33
Experiment Opticaf 0.955+0.08 2505 2.53
Optical® 1.97+0.08 1.65-0.13
3Referencd4].
bBecause the zeroth-order tePy, _=0.208 is so small, the first-order correction of 0.00%fs been included.
‘Referencd5].
9Referencd8].
‘Referencd24].

Recent theories have provided valuesfar . andc. as  proachesT.. Furthermore, many of them provided strong
well as numerical determinations 8f.(x) in the crossover evidence that real systems obey the scaling laws in &js.
region between the limits of large and small Diehl and  (4). Postulated adsorption profiles that incorporate these scal-
Smock [4] have published a renormalization-grodBG)  ing laws have been shown to give reasonable agreement with
one-loop calculation forP.(x), while Smock, Diehl, and optical measurements at the vapor and solid surfaces of criti-
Landau[5] have fitted function$..(x) to the Monte Carlo cal liquid mixtures and polymer solutiong13,14
(MC) data of Landau and Bind¢7]. In addition, Fldter and  [15,18,27,34 The systematic reanalysis of optical data by
Dietrich [8] have provided universal quantities related toliu and Fishef34] showed that profiles that violate one or
critical adsorption with an interpolation to dimenside=3  more of these scaling laws have a significantly reduced level
from exact calculations foi=2 andd=4. Table | lists the of agreement with the measurements. The analysis of Liu
values forP.. ., c., and some other relevant parametersand Fisher and nearly all of the optical experiments that pre-
from these three theories. The numbeysaindx, are defined ceded their work concentrated on the one-phase region, leav-
such that the asymptotic forms &f.(x) given in Egs.(3)

and(4) hold forx>x, andx<xy, respectively. The universal TABLE II. Numerical values for the surface scaling functions
critical adsorption integral§P.. are defined by P . (x) in the crossover regiory <x<x,, obtained from a one-loop
renormalization-group calculatidd].
f P+:fo P, (x)dx (7a  x P.(X) X P_(X)
0.5 0.93251 0.5 1.62924
and 0.6 0.82266 0.6 1.50587
w 0.7 0.73276 0.7 1.41355
J Pf:J [P_(x)—1]dx. (7b) 0.8 0.65672 0.8 1.34223
0 0.9 0.59091 0.9 1.28585
These integrals are a scaled measure of the total excess 1d9 0.53310 L0 1.24051
S . . 0.48176 1.1 1.20356
sorption in the one-phase and two-phase regions. Numerical 0.43585 12 117315
values for the RG and MC surface scaling functidhs(x) ‘ ' '
in the crossover regior; <x<Xx, are provided in Tables I L3 0.39458 1.3 1.14790
and Ill. The MC numerical values in Table Ill were calcu- " 0.35737 1.4 1.12681
lated from the Monte Carlo data reported in R¢f.and[7] 15 0.32373 15 1.10909
by use of the least-squarBsspline approximation with four 0.29328 16 1.09413
knots in order to provide smooth surface scaling functionst-? 0.26569 1.7 1.08145
P.(X). The functionsP. (x) from the RG and MC theories 1.8 0.24069 18 1.07066
were compared graphically in RdB]. 19 0.21802 1.9 1.06145
There is a long list of published experimental studies of2.0 0.19747 2.0 1.05357
critical adsorption at the vapor and solid surfaces of liquid2.1 0.17884 21 1.04681
mixtures and at the solid surfaces of pure fluids. The experi2.2 0.16195 2.2 1.04124
mental probes that have been used include ellipsometr2.3 0.14664 2.4 1.03183
[9-25], optical reflectivity[26,27], evanescent wave fluores- 2.4 0.13277 2.6 1.02477
cence[28], volumetry[29], gravimetry[30], surface tension 2.6 0.10881 2.8 1.01941
measurementgl9,31,33, and neutron reflectivity33]. Ev- 2.8 0.08915 3.0 1.01531
ery one of these studies observed that the thickness of thgg 0.07303

adsorption profile increases dramatically as the mixture ap
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TABLE IIl. Numerical values for the surface scaling functions ing the behavior of the critical adsorption profile in the two-

P..(x) in the crossover regior; <Xx<X,, obtained from a Monte
Carlo simulation[5]. Typical uncertainties in the values Bf. (x)

are on the order of IC.

X P.(x) X P_(x)
0.20531 1.926 0.20390 2.824
0.22170 1.836 0.22475 2.696
0.23809 1.755 0.24559 2.581
0.25448 1.684 0.26643 2.478
0.27087 1.620 0.28728 2.387
0.28726 1.563 0.30812 2.305
0.30365 1.514 0.32896 2.232
0.32004 1.465 0.34981 2.167
0.33643 1.427 0.37065 2.108
0.35282 1.381 0.39149 2.054
0.36921 1.342 0.41234 2.005
0.38560 1.304 0.43318 1.961
0.40199 1.268 0.45402 1.920
0.41838 1.233 0.47487 1.882
0.43477 1.200 0.49571 1.848
0.45116 1.168 0.51655 1.816
0.46755 1.138 0.53740 1.787
0.48394 1.108 0.55824 1.760
0.50033 1.080 0.57908 1.735
0.51672 1.054 0.59993 1.710
0.53311 1.028 0.62077 1.687
0.54950 1.003 0.64161 1.665
0.56589 0.980 0.66246 1.643
0.58228 0.957 0.68330 1.622
0.59867 0.936 0.70414 1.601
0.61506 0.915 0.72499 1.582
0.63145 0.895 0.74583 1.562
0.64784 0.877 0.76667 1.544
0.66423 0.858 0.78752 1.526
0.68062 0.841 0.80836 1.509
0.69701 0.824 0.82920 1.493
0.71340 0.808 0.85005 1.477
0.72979 0.793 0.87089 1.461
0.74618 0.778 0.89173 1.447
0.76257 0.763 0.91257 1.432
0.77896 0.749 0.93342 1.419
0.79535 0.736 0.95426 1.406
0.81174 0.723 0.97510 1.393
0.82813 0.710 0.99595 1.381
0.84452 0.697

0.86091 0.688

0.87730 0.673

0.89369 0.661

0.91008 0.649

0.92647 0.637

0.94286 0.626

0.95925 0.615

0.97564 0.604

0.99203 0.593

phase region relatively untested. Because the RG and MC
theoretical function$..(x) were published after these stud-
ies, phenomenological functions with multiple adjustable pa-
rameters that satisfied the scaling equati@s(4) were for-
mulated for the optical dielectric profile(z,t). Floter and
Dietrich [8] have extracted surface scaling functidhs(x)

from the ellipsometry critical adsorption experiments of Fin-
denegg and coworkers4,15 and from the reanalysis of
optical data by Liu and Fishe34]. These experimental
P, (x) functions scatter widely relative to one another and
relative to the theoretical functions, particularly in the cross-
over regionx~1 between the two asymptotic limits. This
could be due to the fact that the profiles were all formulated
with multiple adjustable parameters. From these experimen-
tal profiles they obtained the estimates=0.955+0.08 and
g,=0.75+0.15, where the amplitude relation/P-
=g./(v—pB) gives [P,=25+0.5. The estimates given
here represent the mean value obtained from seven different
mixtures, and the uncertainty provided fpr is one standard
deviation. Fleer and Dietrich were also able to extract the
two-phase functiof® _(x) from the ellipsometric data on the
liquid-vapor surface of a critical liquid mixture measured by
Hirtz, Lawnik, and Findenegg14], from which they ob-
tained g_=0.768, which givesfP_=2.53. This value is
from one mixture only, which again leaves the two-phase
region relatively untested.

The recent neutron reflectivity experiment of Zheioal.

[33] on the liquid-vapor surface of a critical binary liquid
mixture verified the scaling of Eq(4) and measured
B/v=0.55+0.06, in agreement with the theoretical value of
0.52. This experiment provided a more stringent test of Eq.
(4) than is possible with optical experiments because the
neutron reflectivity signal is primarily sensitive to the power-
law region very near the surface, while optical experiments
probe surface structure at greater depths. Dietrich and
Schack[35] discussed methods by which the prefactar
appearing in Eq(4) could be measured in a neutron or x-ray
reflectivity experiment, although to our knowledge this has
not been accomplished yet.

Other recent experimental studies on critical adsorption
include the paper by Desai, Peach, and Frai3, which
reported optical reflectivity measurements of the liquid-glass
surface of a critical liquid mixture in the limit where neither
component is preferentially attracted to the surface. In the
recent paper by Caylor and La&5] ellipsometry was used
to study critical adsorption at the liquid-vapor surface of five
critical polymer solutions in the one-phase region. Mukho-
padhyay, Senanayake, Caylor, and LE®®] are currently
studying critical adsorption in a critical ionic solution.

In a series of papers, Smith and L&%21,23,24 reported
the ellipsometric measurements at the liquid-vapor surface as
a function of the reduced temperature for a number of critical
liquid mixtures, with full data sets taken in both the one-
phase and two-phase regions. Thestdata from these pa-
pers was presented in Ref24] for the critical aniline-
cyclohexandAC), isobutyric acid—wate(lW), 2,6 lutidine-
water (LW), and nitrobenzene-hexani®lH) mixtures. The
data analysis used in these papers provided strong confirma-
tion for Eq.(2) in both the one-phase and two-phase regions,
and values for the universal integrdl®.. were statistically
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fitted for each mixture. The experimental values determined m Je(+o,t)+ e(—oo,t)
for the integrals in Ref(24] are given in Table I. An impor- pPp=— T

) : 2 . - N e(+o,t)—e(—o,t)
tant shortcoming of this analysis is that its range of validity

is restricted to the ellipsometric data at large reduced tem- +o[e(z,t)— e(+,t)][e(z,t)— e(—»,1)]
peraturest=10 3, while the data are resolved down to Xf ezb)
t~107°. The purpose of the current paper is to provide a o '
highly sensitive test of the surface scaling functidhs(x) (10
derived in the RG theory and the MC simulation with an
analysis of the ellipsometric data for the mixtures AC, IW, wheree(z,t) is the optical dielectric profile of the reflecting
LW, and NH that is valid over the entire range of reducedmedium. The Drude equatiof10) is valid only for surface
temperatures. This is acheived by a graphical comparison girofile thicknesses that are thin compareditoSincez is
this ellipsometric data with ellipsometric curves calculatedscaled byé in Eq. (2), this corresponds t§<\, which oc-
numerically [36,37] from the RG and MC surface scaling curs far fromT.. For thicker profilegsmaller reduced tem-
functions. The fact that these theoretidal (x) functions peratures Maxwell's equations can be solved numerically
have zero adjustable parameters allows a much stronger td&6,37] to derive the pp,t) curve, which would be pre-
than was possible in previous pap¢fs,14,18,34 which  dicted from a postulated theoretical static intrinsic profile
were forced to test surface scaling functions with multiplee(z,t). The capillary wave contribution will be discussed
adjustable parameters. below. o

In Sec. Il we describe the assumptions used in our calcu- In Ref.[24], (p,t) measurements on the liquid-vapor sur-
lations of the theoretical ellipsometric curves. The theoreticaface of the critical mixtures AC, IW, LW, and NH were
ellipsometric curves are presented in Sec. Il and comparegresented. Equatiofi0) was used to derive the nearly exact
with the experimental data. In Sec. IV it is demonstrated thatesult
the ellipsometric curves can be rescaled such that they be-
come approximately universal over a certain range, while an . .
explanation for this universal behavior is provided in the p:pBG_ffE(t)(”'—_”H)M50*(f P*)tﬂ » 1D
Appendix. Results from Sec. IV are used in Sec. V to make
an inference on the true value of the universal ratiowheres, andzy are defined in Eq(13) below andf (t) is
C4 /P .. Finally, a summary is provided in Sec. VI. the weakly varying function of defined in Eq(A4) of Ref.
[9]. The background termgg is also nearly independent of
_ t. It contains terms from many different contributiof4]
IIl. THEORETICAL  (p,t) CURVES that vary significantly with large changes in temperature, but

Phase-modulated ellipsome{0] is a particularly effec- vary only slightly in the small range of temperatures about
tive method for probing the order-parameter profile. A pro-Tc Studied in our experiment. Equatiail) was used to
cedure established by Beagleh{] is to moniter the co- analyze the data at large reduced temperatures and the ex-

efficient of ellipticity at the Brewster angle, defined by perimental values given in Table | for the universal integrals
JP. were determined.

o In the current manuscript, an algorithm for the numerical
p=Im(ry,/r9)ls, (8)  integration of Maxwell’s equations is employed to derive RG
and MC theoretical 4p,t) curves, which can be compared
] o directly with the data for the mixtures AC, IW, LW, and NH
wherer, andr are the complex reflection coefficients for fom Ref.[24] over the entire range of reduced temperatures.
the two independent polarizations. The coefficigtitas con-  The justification for neglecting the capillary wave contribu-
tributions from both the static intrinsic profile expressed ingjgn pew Will be provided below. The algorithm of Law and
Egs.(1) and(2) and the thermally generated capillary wave geaglehole[37], which is a modification of the Born and
fluctuationg 42]. Marvin and Toigg 43| have shown that for - \yof algorithm [36], will be used for the numerical integra-
light reflecting off a surface for which both the thickness of i, Al the numericalpp values will be calculated with an
the static intrinsic profile and the amplitude of capillary Wavegecuracy of better thart 5x 108 over the entire range of
oscillations are small compared to the wavelength of light.eqyced temperatures. As a comparison, our experimpntal

(A=633 nm), the contributions te from the capillary waves \5jues were measured with a typical uncertainty of
and the intrinsic profile are additive. Thus the ellipsometricy 155

measurement on the liquid-vapor surface of a liquid mixture  The numerical derivation of a theoretical,{) curve re-

can be written quires the development of a theoretical optical dielectric pro-
file e(z,t). We will use the profile developed in Ref$,24],
which we now summarize. The static intrinsic profile at the
liquid-vapor surface of a liquid mixture consists of both a
composition profile and the variation of the total number
wherepcy is the capillary wave contribution anglp is the  density of molecules from its effectively zero value in the
intrinsic profile contribution. For thin surface profiles com- bulk vapor to the much denser bulk liquid value. The com-
pared to\ the contribution of the static intrinsic surface pro- position profile will be referred to as the critical profile and is
file to the ellipsometric coefficienp is described by the confined to the liquid sidez=0) of the surface. It is ex-
Drude equatiorn44] pressed quantitatively in terms of the local order parameter

dz,

P=pewt P, 9)
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TABLE IV. Nonuniversal bulk parameters required for the analysis of the four critical liquid mixtures

studied in this paper.

Mixture e ? ey M_ &s (A eL(+2,0)° T, (Kelvin) P

AC 2.035 2.5163 1.080.03° 2.3+0.2¢ 0.592 303.0420.003
W 1.94 1.773 0.7830.03¢ 3.63¢ 0.0‘7f 0.405 299.0920.003
LW 2.2179 1.773 0.931 0.007h 2.5+0.3' 0.3082 306.57¢0.004
NH 1.8909 2.4218 0.7760.006 3.1+0.4K 0.623 293.10%0.004

8Referencd51], except where noted.
PReference 24].
‘Reference$52,53.
dReference$52,54.
®Referencd45].
fReferencd52].
9Referencd55].
"Referencd56].
iReferencd57].
IReference$53,58.
KReferencd59].

m(z,t) defined in Eq(1) and obeys the critical scaling of Eq.

X1<X=X,. The values foix, andx, were chosen such that

(2). The total number density profile will be referred to as thethe asymptotic functions of Eqé3) and(4) agreed to within
noncritical profile. It becomes very thick as it undergoesa few percent with the numerical values®f (x) at x, and

critical scaling near théiquid-vapor critical point, but near
the liquid-liquid critical point in our experiment it is only a
few molecular layers thick24,34.

The local order parameten(z,t) is commonly converted
to the optical dielectric profilee(z,t) by use of the two-
component Clausius-Mossotti relatipfs]

e (z)p 1= (Z)] = n(Z,1), (12

where volume changes on mixing, which are typically only

1-2 % for most mixtures, have been neglected. In #8§)
fori=L andH,

Gi_l

=m, (13

7i

€; is the optical dielectric constant of pure liquidand

B e(z,t)—1

e(zt)+2° (14

7(Z,t)

In Ref. [9] the Clausius-Mossotti relatiofl2) was used to

X1, respectively.

In reality the noncritical profile spans both the liquid and
vapor sides of the surface, but for the sake of simplicity it
will be confined to the vapor side«0). Since the noncriti-
cal profile is very thin compared to the critical profile, sim-
plifying a realistic profile in this manner causes a negligible
change in the profile’s appearance. In Re¥4] the Fermi
interfacial profile expected in mean-field thed#6] was
modified to give the optical dielectric profile

[e(0t)—1][1+e %/&]

eZY=1+———cwar

where the vapor correlation lengtfy scales the noncritical
profile thickness.

Equationg15) and(17) describe the model optical dielec-
tric profile that will be used in the numerical integration of
Maxwell’'s equations. These equations contain many nonuni-
versal parameters that must be specified for each mixture.
The values used fot, , ey, M_, &, ande (+=,0) are
provided in Table IV. We are relying on literature values for

convert the critical profile expressed in terms of volume frac-|| of these parameters except (+«,0). The correlation

tion in Egs.(1) and(2) into an optical dielectric profile

1+ 2[A(z )+ p(+oo,1)]

e FYE R e
where
Z+72,
A(th):(ﬂL_UH)MtB[P+( ‘. )_P+(°°)- (16)

TabledP. (x) values from the RG and MC theories in the
rangex;<x<X, are supplied in Tables Il and lll, respec-
tively. To construct the function®.(x) over the entire
range O<x< +o, Egs.(3) and(4) were used fox>Xx, and

X<Xq, respectively, while linear interpolation was used for

length amplitude in the two-phase regiafy,_ , was deter-
mined by using Eq(6). To determinen(+,t) in Eq. (15),
Eqgs.(12) and(13) were used withp, (+%,t) = ¢, (+,0) in
the one-phase region ang (+,t)= ¢, (+%,0)+ M _t# in
the two-phase region. The surface optical dielec#(6,t)
can be expressed in terms of the surface volume fraction
¢ (0t) using Egs.(12—(14). The extrapolation lengtlz,
appearing in both Eq$15) and(17) can also be expressed in
terms of ¢ (0t) using Egs.(1) and (2). If z.<¢.., the as-
ymptotic power law of Eq.4) can be used foP.(x) to
provide the analytic result

QDL(O,t) - ()DL( + OO!O) —viB

T (18)

Ze=&o+
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TABLE V. The second and third columns provide the liquid-
vapor surface tensions for puteandH, whereT is the temperature L5 T T T
in degrees Celsius. The fourth column states the surface area per
molecule of the liquid mixture. These values allow the surface vol-

ume fractione (0t) to be determined for each mixture using Eq.
(20).

Mixture o ? on? a®
AC 27.62-0.1188 44.83-0.1089 4.50
W 26.88—-0.0920r 75.83-0.147Tm 2.73
LW 33.91-0.1159 75.83-0.147m 1.90
NH 20.44-0.102Z 46.34-0.1157T 2.50
8Referencd 60].

PReference 24].

Outside the applicability of this limitz, must be determined
from ¢, (0,t) numerically using linear interpolation on the

values ofP..(x) provided in Tables Il and Ill. This leaves 0.17 T T T
¢ (0t) and ¢, as the only two unknown quantities in Egs. e
(15) and (17). Two methods of estimating, (0;t) will be 0.16 I 2-3 e -

discussed below and, will be left as the only adjustable
parameter in the calculation of the theoreticalt] curves.
In Ref. [9] it was assumed that the surface layer is pure 0.14 | (b) IW .
L, ¢, (0t)=1. This assumption is plausible because for each
mixture we have studied the liquid-vapor surface tension of 13 o5 %13 [

pureH, oy, is considerably larger than the liquid-vapor sur- P %_gﬁ::: i
face tension of purd, o, . In Ref.[24], ¢ (0t) was esti- )
mated using a statistical mechanical theory and surface ten- 011k -
sion measurements. In the semiempirical theory of Tamura, 1-2 e
Kurata, and Odani47], the liquid-vapor surface tension of U
the mixture,o, is related top, (0,t) through the relation 0.09 . . .

T 107 1073 1072 107!

o= (O o +[1— o (0)]oH ™. (19)

The surface volume fraction is determined by the bulk vol- o
ume fractiong, (+%,t) and the surface tension difference  FIG. 1. (a) Semilog plot of three calculations of times 1000,
oy—0oL, as a function of the reduced temperatuie both the one-phase and
two-phase regions. The values used for the noncritical correlation
length wereg,=3.3, 3.0, and 2.55 A for curves 1, 2, and 3, respec-
(200 tively. The MC surface scaling functiori, (x) with the condition
¢ (0t)=1 and the parameter values for IW in Table IV were used

Here the parameter is the area per molecule at the liquid- in the calculations(b) The curves labeled 12 and 2-3 are the
P p q differences irp, Ap, between curves 1 and 2 and between curves 2

vapor surface of the mixture. In Rdj24] @ Was approxi- - 54 3, respectively, with the one-phase region represented by the
mated as a constant and was estimated by comparing Megyjig jines and the two-phase region by the dashed lines.
surements ofr for the mixtures AC, IW, LW, and NH with
Egs.(19) and (20). In Table V the values of , oy, and using the MCP.(x) functions ande, (0t)=1. For the
« that were used in Ref24] are provided for each mixture curves labled 1, 2, and 3 the values used for the noncritical
so thate, (0t) can be determined from EQO). correlation length weret,=3.3, 3.0, and 2.55 A, respec-
As discussed above, thé~ " power law forp in Eq.(11) tively. Figure 1b) shows the differencA p between curves 2
holds only for large reduced temperatutes10~3. How-  and 3 and between curves 1 and 2, labeled32and 1-2,
ever, one would expect the constant tesgy in Eq. (11) to  respectively. Whilep varies over a range of about<dL0 3
remain constant as—0. Any contribution top that does not  for each of the three curves, the difference for any two of
vary significantly over the small temperature range includedhe curves only varies by about 1Dover the entire reduced
in the interval 103<t<10!, over which Eq.(11) is valid, temperature range. This is on the order of the uncertainty in
will vary even less in thevery small temperature range of the experimentap values and is therefore negligible. As
t<10 3. expected, this contribution tpgg remains constant as
In Ref. [24] it was shown that the contribution of the t—0. The effect of varying¢, is to change the value of
noncritical profile top is contained in the constant term pgg and to raise or lower thep(t) curve by a constant value
pec Of Eg. (12). Figure 1a) shows three numericalp(t) without changing its shape. In calculating the theoretical
curves for the mixture IW. All three curves were calculated(p,t) curves,, will be adjusted to give the correct value for

e (01) _ e (+x,t) exr{a(UH_UL)
1_¢L(0=t) 1_(PL(+OO=t) kBT .
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04 T T T t=<10 2. Thereforepcy is yet another approximately con-
03 stant contribution tpgg. We will neglectpcy, but its con-
0.2 tribution will effectively be included inpgg by making the
0.1 appropriate choice for the single adjustable param&ter
0.0
-0.1 11l. COMPARISON OF EXPERIMENTAL

103A§ -0.2 AND THEORETICAL (p,t) CURVES

-0.3
-04
-05
-0.6
-0.7

In Fig. 3 the experimentalg(t) data for the mixtures AC,
IW, LW, and NH are compared with the theoretical RG and
MC curves generated by the numerical analysis described in
Sec. Il. The experimental data in the one-phase and two-
phase regions are represented by circles and squares, respec-

-08 tively. The MC curves are represented by solid lines, while
0.9 — '_4 '_3 ' ) - the RG curves are represented by dashed lines. The param-
10 10 10 10 10 eter values given in Table IV were used in the calculation of
t the theoretical curves, along with (0;t)=1. In Figs. 3a)

and 3c) the MC curves appear to be discontinuoud at A

_FIG. 2. Semilog plot of the numerically calculated difference discontinuity is impossible since both the bulk and the sur-
Ap, times 1000, as a function of the reduced temperatdez the  face phase transitions are continuous. In fact, the one-phase
mixtures NH, AC, IW, and LW. The one-phase and two-phase re4pq two-phase region curves were calculated down to
g?ons are r(ﬂresinted by solid. and dashed Iipes,iespectively. Trfe__ 10-% and it was determined th@_tis continuous af, .
differenceAp is p calculated withe, (0f)=1 minusp calculated As discussed in Sec. Il, only the comparison between the
W'trf' goL(O,t)I_det?rmln_ed by Eq(20). In bc:jth fa|CU|a_ter])nE the MC shapes of the curves is of importance and the comparison
surtace scaling u.nCt'OnEi(X) were used along with the param- between their vertical levels is not meaningful. The values
eter values given in Table IV. o .

used for the noncritical correlation length were chosen such
o _ that the theoretical curves would be on the same vertical
pec. 1-e., the value for which the theoretica,€) curve is  |evel as the experimental curves. Thevalues used for AC,
on approximately the same vertical level as the experimentaly, LW, and NH, respectively, were 1.7, 3.3, 4.0, and 0.9 A
(p,t) curve. The only important comparison we will be able for the MC curves and 2.5, 2.1, 1.7, and 2.0 A for the RG
to make between the theoretical and experimeniat)(  curves. As expected, the noncritical profile is found to be
curves will be of their shapes, not their vertical levels. only a few molecular layers thick.

_For each of the four mixtures, Fig. 2 shows the difference The first impression from Fig. 3 is that the experimental,
Ap between a MC theoretical curve calculated withRG, and MC p,t) curves are in qualitative agreement in all
¢ (0t)=1 and a curve calculated witp, (0t) determined four graphs. The MC theoretical curves are not in perfect
by Eq. (20). All parameters are otherwise the same for theagreement with the experimental data, but they compare
two curves of each of the four mixtures. In the interval more favorably than the RG curves do. Some past ellipso-
t<102 all the curves have a variation inp on the order of metric studies of critical adsorptiofi4,15,34 have found
10~ *, except for the two-phase curve of LW, which varies by better agreement of the numerically calculated theoretical
about 5< 10 4. The variation of 104 is larger than in Fig. curves with the experimentaip(t) data. However, these
1(b), but is still much too small to affect any of the conclu- studies used phenomenological functions Ror(x), which
sions drawn below from comparisons between the theoreticalad several adjustable parameters, while the MC and RG
and experimental f,t) curves. With the exception of the surface scaling functions have zero adjustable parameters.
two-phase LW curve, switching between the two methods Figure 3 provides several comparisons that are more spe-
for determininge, (0t) has an effect similar to varying the cific than the observation that the MC curves generally fit the
value of ¢, : it merely changes the value @izs. As dis-  experimental data better than the RG curves do. The first
cussed above, the value pkg for the theoretical g,t) such comparison is that for all four mixtures the chosen
curves will be adjusted to give agreement with the experivalue of £, simultaneously placed the one-phase and two-
mental data by adjusting the value &f; this does not affect phase region MC curves on the same vertical level as their
the important comparison between #fepesf the theoreti- corresponding experimental curves. This simultaneous
cal and experimental curves. All theoretical curves will beagreement could not be obtained for the RG curves; different
calculated withe (0t)=1 since Eq.(20) complicates the values ofé, would be needed to give both the one-phase and
analysis by introducing the parametets o, andoy. It  two-phase region curves the correct level. It is not clear to us
should be emphasized, however, that the two-phase LWhat this infers about the inaccuracy of the RG surface scal-
curve in Fig. 1b) suggests that under certain circumstancesng functions.
the temperature dependencegf0,t) may have a small but A second observation is that in all four graphs of Fig. 3
non-negligible influence on the shape of thet] curve. the extremum ofp in the one-phase region occurs at a

The previous discussion has neglected the contributiosmaller reduced temperature for the experimental curve than
due to capillary wave fluctuations, denoiegly in Eq.(9). I for the RG curve, with the position of the MC curve’s peak
Ref. [24] an approximate expression fpgy, was shown to  being in between the two. Much of the discussion in Sec. IV
have a variation on the order of 10 over the range is relevant to this point, while in Sec. V inferences that can
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FIG. 3. Semilog plots op, times 1000, as a function of the reduced temperatdioe the critical mixturega) AC, (b) IW, (c) LW, and
(d) NH. The experimental data are represented by circles in the one-phase region and squares in the two-phase region. Both horizontal and
vertical error bars are provided for all data points for which the error bar separation is larger than the width of the circle or square
representing it. The numerical calculationslising the MC and RG surface scaling functidhs(x) are represented by the solid and
dashed lines, respectively. The conditipn(0,t) =1 along with the parameter values given in Table IV were used in the calculations.

be drawn from this observation are carefully considered. exception of the one-phase curve for NH, which is in good
The final specific comparison that we will consider is be-agreement with the experimental data for10~ 3. Three of
tween the slopes of the curves. Equatidd) indicates that the four MC two-phase curves are more stretched out verti-
for large reduced temperatures the slope @f(g§ curve is  cally than the experimental curves, with AC being the excep-
proportional to the universal integraf®.. . Closer toT this  tion. In the one-phase region the MC curves compare very
proportionality does not necessarily hold. However, numerifavorably with the experimental data: the NH curve is too
cal integration ofP..(x) functions with varying/P.. values  stretched out vertically and the AC curve is under stretched,
(see Sec. Yhave provided a clear conclusion that holds overwhile the IW and LW curves are in good agreement with
the entire range of: the greater the value ¢tP, or [P _, their corresponding experimental curves. Thus the conclu-
the more stretched out the,t) curve is in the vertical di- sions that can be drawn by comparing the slope, or “vertical
rection. The values in Table | indicate that the M®.. stretch,” of the curves are more or less in line with the
values are larger than the RG values. Thus it is not surprisingonclusions of Ref[24].
that all the MC curves in Fig. 3 are more stretched out ver- To calculate the theoretical curves graphed in Fig. 3, the
tically than the RG curves. The experimental values of bottparameter values provided in Table IV were used, it was
JP. and[P_ determined in Ref{24] and listed in Table | assumed thap (0t)=1, and the capillary wave contribu-
are in between the RG and MC values. Based on this ongon pcy was neglected. While the consequences of the latter
would expect all the MGRG) (p,t) curves to be mordesy  two approximations were carefully considered in Sec. II, the
stretched out vertically than the experimental curves. Thigpotential effects of inaccuracies in the measured parameter
trend is followed in Fig. 3, but there are exceptions. Thevalues in Table IV have not been discussed. The uncertain-
prediction holds for all the RG curves, with the possibleties in the measured values ©f are included in the hori-
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of no concern in the analysis of Fig. 3. Curve 2 of Figp)4

was calculated with the value d¥l _ decreased to 1.00,
which is the minimum of the range of uncertainty for the
measured value for AC. The value bht which the peak of

the one-phase curve occuttye,, has not changed. How-
ever, both the one-phase and the two-phase curves are less
stretched out vertically, which is predicted at large reduced
temperatures by Eql1). Curve 3 of Fig. 4b) was calculated
with e4=1.766, which is the value of the optical dielectric
constant of water at 50 °C, the maximum temperature at
which p was measured for the mixture LW. Again the value
of tpeakhas not changed, but the curve has been stretched out
slightly in the vertical direction. A similar result occurs when

€, is varied. Curve 3 of Fig. @) and curve 4 of &) were

1= — — — ) calculated with the values @b, decreased to 2.1 A for AC
107 10 10 10 107! and 2.2 A for LW, respectively. Equatiofs) was used to
t determine&,_, so that the correlation length in the two-

phase region has decreased proportionally. Figure 4 shows
that &, is the only parameter that changes the value of
toeakWhen its value is varied. For both AC and LW, decreas-
ing the value of,, has decreased the valuetgf,.and has
caused the curves to be less stretched out vertically. The
latter effect is predicted at large reduced temperatures by Eq.
(12).

Figure 4 leads to the following questions. Could it be that
either the RG or MC surface scaling functions are very ac-
curate and the use of incorrect values for the parameters
€, €y, M_, &, , andp (+,0) in the calculations of the
theoretical p,t) curves are causing a decreased level of
agreement with the experimental data in Fig. 3? Is there a set
of values for these parameters for each of the four mixtures
that would give good agreement between the experimental
(p,t) curves and either the RG or MC curves? Would these

t sets of parameter values be possible, given the actual mea-
sured values and their uncertainties?
FIG. 4. Semilog plots op, times 1000, as a function of the 10 answer these questons for the MC one-phase function

reduced temperatuten both the one-phase and two-phase regions.P+(X), MC (p,t) curves were calculated with the value of
The curves represent numerical calculationspofising the MC &0+ being decreased until the value tgf,, matched the ex-
surface scaling functionB . (x) and the conditionp, (04)=1. (a) perimental value. As was pointed out above, this is the only
Curves 1, 2, and 3 were calculated using the parameter values givatay to change the value of.,.. Next the value oM _ was
for the mixture AC in Table IV, with the exceptions 6f_=1.00  adjusted until the shape of the MC one-phase curve matched
being used for curve 2 ang),. =2.1 A being used for curve 3b) the experimental curve shape. Finally, the valuetpfwas
Curve 1 was calculated using all the parameter values given for thehosen, which laid the one-phase MC curve on top of the
mixture LW in Table IV. Curve 2, which practically lays on top of experimental curve. The final MCp(t) curves are shown
curve 1, was calculated using, («,0)=0.3015. Curves 3 and 4 along with the experimental curves for each mixture in Figs.
were calculated usingy=1.766 and,, =2.2 A, respectively. 5(a) and Fb). Excellent agreement between the one-phase
curves was achieved for all four mixtures fortpeq. For
zontal error bars of the experimental data points in Fig. 3. TAC this agreement continues through and over the entire
address the uncertainties in the measurements of the oth@wo-phase curve. For IW the agreement between the two-
parameters, MC theoretical curves were calculated with thehase curves is poor for large reduced temperatures, while
values ofe_, eq, M_, &, and ¢ (+%,0) increased or for LW and NH the agreement endstgt,. Table VI pro-
decreased relative to the measured values given in Table I\Wides the values ofy,., M_, and ¢, used in the calcula-
Figures 4a) and 4b) show several of these curves for the tions. The values used faj , €4, andg (+%,0) were un-
mixtures AC and LW. In both figures the curve labeled 1changed and are given in Table IV. All four values &,
was calculated without changing any of the values of théhave decreased relative to the values given in Table IV. With
parameters in Table IV. Curve 2 in Fig(b}, which practi- the exception of IW, however, the changes are within the
cally lies on top of curve 1, was calculated for LW with uncertainties of the initial values. The values Mf have
¢ (+2,0)=0.3015. This is below the measured value bychanged by 5.7, 0.4, 7.0, anr€l11.7 times the values of the
almost eight times the value of its uncertainty given in Tableuncertainties given in Table IV for the mixtures AC, W,
IV, leading us to the conclusion that the measurement oL W, and NH, respectively. It is highly improbable that three
¢ (+,0) was precise enough that its possible inaccuracy isf the four measured values & _ could be so inaccurate.
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TABLE VI. Values used in the numerical calculations of the
(p,t) MC theoretical curves graphed in Figgapand %b). These
values were chosen to give the best possible agreement between the
one-phase MC curves and the experimental data. See the text for
details. The value given in parenthesis after egchandM _ entry
states the difference between the value of this entry and the corre-
sponding measured value given in Table 1V, in units of the uncer-
tainty of the measured value.

Mixture Eor (A M_ & A
AC 2.2(-0.5) 1.20(5.7) 1.3
W 3.4(-3.3 0.795(0.9 3.0
LW 2.1(-1.3 0.98(7.0 2.5
NH 2.8(—0.7H 0.70(—11.9 2.8

experimental data, the changes in the valuesviof and
&0+ would be even more improbable. This is proven by the
following argument. Figure 3 shows that thg,, values for
the RG curves would have to be decreased even more than
was necessary for the MC curves. This would require all four
&y values to be decreased by a greater amount than was
necessary for the MC curves, thus increasing the unlikeli-
hood. A decrease in the value éf, causes a theoretical
curve to become less stretched out vertically. Figure 3 shows
that the RG p,t) curves are initially less stretched out ver-
tically than the MC curves, and the larger decrease in the RG
values for &y, would increase this disparity. For the MC
curves of the mixtures AC, IW, and LW, thé _ values had
to be increased in order to stretch thgt) curves out verti-
cally to match the shapes of the experimental curves. To
achieve this agreement the RG valuedwf would have to
be increased by even larger, more improbable amounts for
t these three mixtures. Thus the RG functiBn (x) is also
_ clearly not in quantitative agreement with our experimental
FIG. 5. Semilog plots op, times 1000, as a function of the gata.
reduced temperatutiefor the critical mixtures(a) AC and IW and Such clear conclusions cannot be reached for the two-
(b) LW and NH. The experimental d.ata are represented py circles i hhase theoretical MC and RG functioRs (x). Without an
t_he one-phase region and squares mthe_ two-phase reglon._The o) 9<tremum in the two-phasep_(t) curves, there is nothing
B e T 410 131 1 analogous cy, WHEh reifes 2 i vale
g = nects, ' order to reach agreement between the theoretical and experi-

the measured values ef;, ¢, and ¢ (%°,0) given in Table IV. . .
The values used fok,, and M _ were chosen to give the best mental curves. This agreement could be reached with a range
of values ofé,_ andM _ .

possible agreement between the one-phase theoregigdl durves
and the experimental data.

1075 1074 1073 1072 107!

. IV. UNIVERSAL ELLIPSOMETRIC CURVES
Instead of varying the values & _ to reach the correct

shapes of the MC curves, the valuesepfor € could have There are many well-known examplg48] in which a
been varied. Realistic changes in the valuedviof and e universal bulk scaling law is the underlying cause of a uni-
produced curve 2 of Fig.(4) and curve 3 of Fig. &), re-  versal experimental curve, where measured bulk quantities
spectively. The amount of change that these two cases prétave been rescaled in order to provide a graph in which
duced in the shape of the ) curves was about the same. It different data sets all fall on a single universal curve. How-
would be necessary to change the valueseofor ey by  ever, we are unaware of any examples in the literature in
equally improbable amounts in order to obtain the same levelhich a universal experimental curve is the result of a sur-
of agreement that is observed in Fig&)sand 8b). Thus we face scaling law such as E). Although the scaling in Eq.
conclude that the MC functio®, (X) is not in quantitative (2) has a dramatic effect on the behaviormfor measure-
agreement with our experimental data. We point out oncenents of critical adsorption, rescaling the,{) data in order
again, however, that Fig. 3 shows qualitative agreement bde achieve a universal ellipsometric curve is far from trivial.
tween the behavior of the MC, RG, and experimengtl  This is due to the fact that ellipsometry measures a compli-
curves for all four mixtures. cated integral of the surface composition profile that cannot
If this method were to be repeated in order to obtainbe expressed analytically except in certain linfigsg., Eq.
agreement between the one-phase R@)(curves and the (10)]. In this section we examine a method of rescaling the
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FIG. 6. log-log plots ofpy [defined in Eq(21)] as a function o&/\ for each of the four mixtures, as labeled on the gragsMC and
(b) RG theoretical curves are shown in both the one-phase and two-phase regions. The experimental curves are sh@vana-gtase
and (d) two-phase regions, along with the MC and RG curves of the mixture AC for comparison.

(p,t) data in order to produce an experimental curve that iRG theoretical curves in Figs(® and Gb), respectively. In
approximately universal. In the Appendix we provide an ex-both figures there is a smdbut definitely resolvedspread
planation of how this approximately universal curve is thepetween the curves of the four mixtures faf, /N
result of the surface scaling law in E@®). < (€4 I\) peaks Where €, /\) pearis the value of¢, /X at the
Whenp —pgg is plotted as a function df the curve inthe  extremum in the one-phase region. This spread becomes
one-phase region always has an extremum. SpiS  |arger foré, /N> (£, /\)peaxin the one-phase region. This is
nearly a constant, this fact can be seen in Figg)B(d).  aiso observed for the one-phase experimental data in Fig.
The value ofp— pgg at the extremum and its position will be 6(c). While the theoretical two-phase(,£_/\) curves in
denoted b — pac)peak@Ndtpeal, rESPECtively. There is alarge rigs ga) and @b) are also approximately universal, Fig.
range in the values of botlp € peg) peak@ndipearfor the four gy shows that the experimental curves are quite spread out
liquid mixtures, regardless of whether the experimental, MC; 4, o two-phase region. This large spread is discussed

or RG Curves are being compareql. Howeverp i pgg IS briefly in the Appendix, but its cause is not understood. The
normalized by its extremum value in the one-phase region, \~ 2nd RG curves of the mixture AC are also plotted in
- Figs. 6c) and &d) for comparison.
= _P_Pec ’ 21) In the one-phase region boty, and the functiorgs dis-
(P~ PG peak cussed in the Appendix are equal ge- pgs divided by a
constant. Thus the maxima pf; and g occur at the same
and py is plotted as a function of/\ rather thant, the value of &, /\, denoted £, /\)pear. The only clear conclu-
resultant curve is approximately universal in both the onesion that can be reached from the graphical comparisons in
phase and two-phase regions. This is shown for the MC an#ligs. Gc) and &d) is that the values of{, /\) peacare largest
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TABLE VII. MC, RG, and experimental values of{ /\)peax 0.070 i .
for each mixture. The mean value for the four mixtures is provided - > "
in the final row, with an uncertainty of one standard deviation. The [ 08
uncertainties of the theoretical determinations for each mixture are
all approximately 0.0005, while the experimental uncertainties are [E_,

] 0.065 - -

approximately 0.01. =+ 0.667
A peak e

Mixture MC RG Experiment [ ]

0.060 4
AC 0.0564 0.0480 0.060 [ |
W 0.0602 0.0518 0.067 0%
LW 0.0562 0.0492 0.078 005 ————+ 0]
NH 0.0607 0.0516 0.075 0.4 0.6 0.8 1.0 1.2

C

Mean 0.0584:0.0024  0.05020.0019  0.076:0.008 *

FIG. 7. Position of the maximum in the one-phase region of the

for th . | I for the RG niversal ellipsometric curve, plotted as a functionaf. The
or the experimental curves, smallest for the curves, an €4 I\)peax vValues were calculated for the mixture IW using the

in between for the MC Curves._The MC' RG, and eXpe”men'phenomenological surface scaling function given in E2B). The

tal values of €, /\)peqc are given in Table VII for each cajculated[c, (¢, /\)pead Pairs are represented by's. The
mixture. The differences between the MC values Offc, (¢, /)),eqd pairs that were calculated with the same value of
(&+/\)peak for the different mixtures are definitely real c. /P, , are connected by a line and the valueef/P.. . is given
rather than being due to a lack of numerical precision. This igeside the line.

also true for the RG values. Thug (/\)eaxis nearly, but
not exactly, a universal number.

It was noted in a preliminary reporf25] that the
(pn. €+ IN) curves and the value of( I\) peak@re approxi-
mately universal when applied to a homologous series o
critical polymer solutions. In this preliminary report esti-
mates were obtained for the correlation length amplitud
(&o4) and the polymer indexn() that occur in the expression
for the correlation length of a critical polymer solution,

(4) are varied such that the ratio /P, ;. remains constant
the values oftpeyand (€ /\)pear for each mixture change
pegligibly. In this section we will show thaté( /\)peax IS
primarily dependent on the value of. /P.. . and that this
Jact can be used to make an inference on the value of
Ci/Po .

The MC and RG theoreticd?, (x) functions offer only
two values for the ratic, /P.. . . To thoroughly test the

E=&,, Nt 7, (22 dependence of{; /\)peakOn ¢ /P, we will use a phe-
nomenological functiorP . (x) that allowsc, andP,, , to
whereN is the polymer chain length. be varied arbitrarily. The function we will use for this pur-

The mean values of(; /\) peqifor the RG and MC theo- pose is Liu and Fisher's “power law-exponential” profile
ries and for the experimental data are given with errors of34]
one standard deviation in Table VII. These mean values pro-
vide a clear contrast between the two theories and the experi-
mental data. This strong contrast is essential to the validity of P.(x)=c,
the conclusions in Sec. V.

Blv
e % (23

1
—+
X

Cy —viB
P,

V. INFERENCE ON THE VALUE OF THE RATIO ¢, /P, , The n,otation in Eq.(23) differs somewhat from Liu and
’ Fisher's notation and has been chosen so that(E8). is

In Sec. IV it was observed that{ /\)yeax iS approxi-  consistent with Eqs3) and(4). This profile may or may not
mately a universal number, i.e., that its value varies onlybe accurate enough to provide quantitatively corrggt)(
slightly with changes in the nonuniversal parameters  curves, but we see no reason why it should not provide quali-
€y, @ (+,0), M_, and &,. . Furthermore, it was ob- tatively correct conclusions on the dependence of
served that the values of ( /\)peacare smaller for the RG (&, /\)peacOn the ratioc, /P, . . Figure 7 shows a plot of
curves than the MC curves and are considerably smaller fahe peak position &, /\) eqc Versusc, for nine different
the MC curves than for the experimental curves. What doeép,t) curves calculated using the nonuniversal parameter
this imply about the inaccuracies of the RG and MC surfacesalues given in Table IV for the mixture IW and Liu and
scaling functions? , (x)? One of the observations in Sec. lll Fisher's surface scaling function in ER3). The nine data
provides a hint. It was observed that the valuesgf, for  points in Fig. 7 are grouped into three sets of three, with each
the numerically integratedp(t) curves change negligibly set having a different, /P., . value. The three data points
whenM _ is varied without changing the value &, or the in each set are joined by a line and are labeled by their value
other nonuniversal parameters. From E2).it can be noted of ¢, /P.. ;. The graph shows thag( /\)eais nearly in-
that in the one-phase region varyilg_ is equivalent to dependent ot as long asc, /P.. . is held constant, but
holding M _ constant while varying the surface scaling func-changing the value ofc, /P, , changes the value of
tion P, (x) by a multiplicative factor that is independent of (&, /\),eax Significantly. More specifically, &, /\)peax in-

x. This implies that ifP., . andc appearing in Eqg3) and  creases when. /P., . is increased.
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0.080 —r————+——————— c./P. +, we have no justification for considering a math-
e L LR LR LR L EREE 3 ematical model that is more complicated. The parameter val-
0.075 | J ues obtained from the fit to the data points shown in Fig. 8
[ ] are a=0.034+0.002 andb=0.040+0.003 and Eq(24) is
0.070 | represented by the solid line in the figure. Equatia4) can
[ be inverted to provide the relationship
[%_] 0.065 | ;
eak X C+ +
P 0.060 | (Pw +)—A+ B(T) , (25
X J peak
0.055 where A= —0.83+0.07 andB=25+2. If the experimental
[ value of (€ /\)pea=0.070£0.008 is used in Eq(25), one
0050 F o ] obtains
T c.
0.4 0.5 0.6 0.7 0.8 0.9 1.0 ( ) =0.90+0.24. (26)
_£+_ Pooy+
P(D,+

The uncertainty in this determination contains contributions

FIG. 8. Calculated peak position of the one-phase ellipsometrié@m both the uncertainty of the experimental value of
curve € /\)peax @s a function of the ratie, /P.. . . The four  (£+/A)peak@nd the uncertainties & andB. The latter two
squares and four triangles represent calculations for each of the fowncertainties are a result of the calculated points in Fig. 8
mixtures using the RG and MC scaling functioRs (x), respec-  being spread out around the solid line, which, in turn, is due
tively. The 16X's represent four calculations for each of the four to the small dependence of (/\)peax ON the nonuniversal
mixtures using the phenomenological profile in E&3). The  mixture parameters.
middle dashed line represents the experimental value of Ourexperimental estimate in E@6) is surprisingly large
(€4 \) pea=0.070, while the outer two dashed lines represent itsin comparison to the MC and RG values of, /P
range of uncertainty 0.0200.008. The solid line represents a linear =0.577 and 0.442, respectively. We add the caution that the
regression fit to all 24 of the calculated data points in the graph. determined value in Ed26) could be different if an alterna-

] N ) tive phenomenological profile were to be used in place of Eq.

In Fig. 8 the peak position{(; /\)peac is plotted as a (23, This has not been checked because the procedure for
function ofc, /P , for a large number of numerically in- geterminingc,, /P.. , from a phenomenological profile out-
tegrated p,t) curves. The four squares and four trianglesjined above requires considerable computational effort. It is
represent calculations for each of the four mixtures using thehteresting to note that in their analysis of the data from three
RG and MC scaling functionP_(x), respectively. The optical experiments, Liu and FishE84] estimated an even
middle and outer dashed lines represent the experiment rger value ot , /P.. , =1.18. We are unaware of any other

value of (€, /\)pea=0.070 and its range of uncertainty of existing theoretical or experimental determinations of this
0.070+0.008. The 16 crosses, clustered around the experiatio in the literature.

mental value of €, /\)pea=0.070, represent four calcula-
tions for each of the four mixtures using the phenomenologi-
cal scaling function in Eq(23). The 4 crosses for each
mixture form a diagonal line that is approximately parallelto  We have analyzed the ellipsometric data presented in Ref.
the solid line in the graph. There is a significant variation in[24], which was measured on the liquid-vapor surface of four
the value of €, /\)peakWhen the same value af, /P, , is  different binary liquid mixtures in the vicinity of their liquid-
used for the four mixtures. As discussed in Sec. IV,liquid critical point. Various theoretical universal surface
(&4 /N)peax is approximately, but not exactly, a universal scaling functionsP..(x) were used in the numerical integra-
number. Despite this fact, the general trend is clear in Fig. 8tion of Maxwell's equations to provide theoreticap,f)

(€4 /N\)peax increases ag, /P, , increases, regardless of curves that could be compared directly with the experimental
whether the RG, MC, or phenomenological profile is used indata in both the one-phase and two-phase regions and over
the calculation. The graph suggests that the RG and M@he entire range of reduced temperatures. Both the MC sur-
values forc, /P, . are both too low. In order to quantify face scaling functions of Smock, Diehl, and Landaliand

this, linear regression was used to fit all 24 data points in Figthe RG functions of Diehl and Smodi] provided (,t)

8 (including the points calculated using the RG, MC, andcurves that were in qualitative agreement with the experi-

VI. SUMMARY

phenomenological profilgégo the relationship mental data. The MC curves were generally found to be in
better quantitative agreement with the data than the RG

§_+) —a+b C+ ) (24) curves. However, systematic discrepancies were found in the

I Po s/ quantitative comparison between the MC and experimental

k . . . .
bea (p,t) curves, and it was determined that these discrepancies

This linear relationship is suggested by Fig. 8, where a line isre too large to be due to experimental error.

formed by the four points calculated for each mixture using It was demonstrated that could be rescaled to provide
the phenomenological profile. Because we have no knowlthe quantitiespy and g5, defined in Egs.(21) and (A4),
edge of the actual relationship betwee#i, (\),eo and  respectively, which are universér approximately univer-
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sal functions of the single variablg. /\ for .. /A<1. Both o [P 1- 51

pn andgs possess a maximum in the one-phase region and P~ Pec™ —TT(?> X192(X2) X377, Xa<1,
their maxima have the common positio§ (/\)pear. The - (A1)
values of €, /\)peacare given for the MC and RG theories

and for the experimental data in Table VII, where it can bewhere g,(X,)=f.(t) is a universal function ofX,
noted that €, /\)eac is approximately, but not exactly, a =e(+o,t).

universal number. The value of ( /\)peacprovides a strong The parametersy, and 7y, defined in Eq(13), are func-
contrast between the RG, MC, and experimental ellipsometions of onlye, andey, respectively. We have neglected the
ric curves. Finally, it was determined thaf (/\)peais Pri-  small temperature dependenceefand e, so thatX; is

marily dependent on the ratio, /P.. ., where the func- independent ot for the theoretical calculations. Equations
tional relationship is depicted in Fig. 8. This enabled us t0(12)—(14) indicate that the bulk liquid optical dielectric con-
obtain the experimental estimate of /P, ,=0.90=0.24.  gtante(+,t) is a function ofe, , €y, ande, (+,t) only.
This can be compared with Liu and Fishefi3s!] experimen- | the one-phase regiom, (+%,t)= ¢, (+=,0), so thatX,

tal estimate of 1.18 and with the determinations of 0.577 angs aiso independent af The values oiX; andX, are differ-
0.442 from the MC and RG theoretical studies, respectivelyent for each mixture, but in the one-phase region the

In closing we note that it would be worthwhile to repeat (;— 7= - ) curve for a given mixture can alternatively be
this ellipsometric study while varying the wavelength of expressed as @ pac,Xs) curve, withX; and X, being

light, e_specially at longer wavelengths w.here the C”ti.calconstant. In the two-phase regioX, varies weakly as a
scattering from the bulk would be less. This would providesnction oft.

an alternative route to testing the universality of thg In Eq. (AL), p— pae is separable
curves, which are predicted to scale @a. It would also ' '
assist us in deducing a more accurate experimental determi- = pee=01(X1)ga(X2)ga(Xs), (A2)

nation of the raticc /P, - .

whereg;, g,, andgs are universal functions. EquatigAl)
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APPENDIX: EXAMINATION OF THE CAUSE OF THE =(p—pea)/91(X1)g2(X,), which is a universal function of
UNIVERSAL ELLIPSOMETRIC CURVES the single variableX;= £.. /\. Equation(Al) implies that

In Sec. IV it was demonstrated that wheg, defined in P
Eq.(21), is plotted as a function af/, the resultant curve is Oa(EL IN)= W(_i) (£, IN)LBIY, §_:<1. (A3)
approximately universal in both the one-phase and two-phase C- A
regions. In Figs. @—6(d), graphs of py,&/\) are pre- _ o . _
sented. In this appendix we outline an explanation for whyExpressing the above definition gf in terms of the physical

these curves are approximately universal. quantities provides the result
In theory, the coefficient of ellipticityp can be deter- o
mined from the optical dielectric profile of the surface being _ P~ PBG
studiede(z,t) by solving Maxwell’s equations. This solution Gs(& /)\)_the(t)( 7= )M _(&ox IN)PT (A4)

of p would, in general, be a function of integrals of functions

of €(z,t), with the variable of integration being\. Equa-  which we use to calculatgs for each mixture. In the one-
tion (10) and the more specific Eq11), which hold only  phase region, where(+,t) and thusf (t) are independent
when ¢<\, provide examples of such a solution. It can beof t, g5 is merely p— pgg divided by a nonuniversal con-
noted from Eqs(12)—(16) thate(z,t) for z>0 is a universal  stant. In the two-phase region, howeves(t) varies weakly
function of the variables # — 74)M_t#, e(+o,t), and  with t. In Figs. 9a) and 9b), g, is plotted as a function of
(z+2.)/ ¢+ for the critical liquid mixtures we are studying. &, /\ for the MC and RG calculations in the one-phase and
As discussed in Sec. lp—pgg is not expected to have a two-phase regions. Since the graphs are log-log plots, the
dependence on the parametgs nor on the noncritical curves follow a straight line with a slope of-18/v in the
profile [e(z,t) for z<0]. Thus we expecip—pgs t0 be  range ofé/\ over which Eq.(A3) is valid. In this range the

a universal function of the variablesn(—ny)M_t#,  calculatedgs(&/\) functions are universal, i.e., the curves
Xo=¢€(+=,t), and Xg=£&. /N. The variableX; is a result  for each of the four mixtures fall on top of each other in both
of the integration of functions ok(z,t) with respect to the one-phase and two-phase regions. For larger values of
z/INn and the dependence af(z,t) on z/¢é.. By noting  &. /), thegs curves begin to deviate from a straight line and
that (7.—ny)M ,tB:(xlxgﬁ’V)/ct , Where X;=c.(#n_ the curves of the four mixtures simultaneously begin to sepa-
— )M _ (&= IN)P'", it can be seen thgi—pgg is a uni-  rate. This nonuniversality ofj;(X3) proves thatp— pgg is
versal function ofX;, X,, and X5 [49]. Equation(11) be- notseparable as in E§A2), except over the range of appli-
comes a more transparant example of this if it is rewritten asability of Eq. (Al).
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FIG. 9. log-log plots ofy; [defined in Eq(A4)] as a function of/\ for each of the four mixtures, as labeled on the grapsMC and
(b) RG theoretical curves are shown in both the one-phase and two-phase regions. The experimental curves are sh@yvare-fese
and (d) two-phase regions, along with the MC and RG curves of the mixture AC for comparison.

Figures 9c) and 9d) show log-log plots ofg; versus B—v for £ /A<<1. However, there was a large spread in the
&, I\ for the experimental data in the one-phase and twofitted values for botlfy P, and fP_. In both Ref.[24] and
phase regions, respectively. The AC curves from the twdrigs. 9c) and 9d), the apparent spread in tifé®. values
theories are also shown for comparison. Unlike the theoreticould have been caused by inaccuracies in the measured val-
cal curves, the experimental curves do not fall on top of eaclies ofe_, ey, ¢ (+%,0), M_, and§y. . Of these param-
other foré. /IN<1. However, just like the theoretical curves, eters, theé,. values are measured with the least precision.
the experimental curves are linear with the expected slope dfhis issue is unresolved. o
1— B/v for small values of¢/\. This indicates that the ex- In the one-phase region, bothy and py are obtained by
perimental data are obeying the functional form of &),  dividing p— pgg by a nonuniversal constant. Fgs this con-
except that there is a range of values for the prefactorstant is a known function ok_, ey, ¢ (+%*,0), M_,
m(fP,/cy) and m(fP_/c_) for the four different mix-  &y., and\. For py, however, p—pgg)peaxis determined
tures. The factor ot. in the denominatof49] is present graphically and its dependence on the nonuniversal param-
only because the experimental data were divided by it whegters is unknown. In the two-phase regjapis still obtained
g3 was calculated using E¢A4). Since the MC values for by dividing p— pgg by a constant, whiley; is obtained by
c. were used in this division for all four mixtures, the ap- dividing p— pgg by a weaklyt-dependent quantity.
parent spread in the values fe{/P. /c..) in Figs. 9c) and Figures a) and Gb) provide log-log graphs opy as a
9(d) actually indicates a spread in thj¢ .. values. Equiva- function of &/ for the MC and RG calculations in both the
lent conclusions were reached in RE24], where Eq.(11), one-phase and two-phase regions. These curves are similar to
which is equivalent to Eq(A3), was shown to provide a the curves ofg; in Figs. 9a) and 9b) in that they are uni-
good fit to the experimental data with the expected value ofersal and follow a straight line faf/\ <1, with the curves
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of the four mixtures separating for larger valuegbf. They  for two reasons: first, becaugg is exactly universal in this
are dissimilar in that the curves g for the four mixtures in  range and, second, because the maximum valug @i the
Figs. 9a) and 9b) lay precisely on top of each other over a one-phase region is approximately universal. In addition,
range of smallk/\ values, while thepy curves for the four  py is approximately universal in the two-phase region for the
mixtures in Figs. 6a) and @b) have a small spread in this above reasons and becadsét) varies only weakly witht.
range. Also Figs. @ and 9b) show that the peak value of We have noted thatp(— pgg) peax IS @approximately propor-
g3 in the one-phase region varies slightly from mixture totional to c, f (t)(7_— ﬂH)M—@H_/)\)B/”, but can a more
mixture, while the peak value gy is one for all of the accurate relationship betweep+ pgg)peak @nd the nonuni-
mixtures by definition. These differences eliminate the posversal parameters be derived? Our attempts have failed.
sibility that (p_—EG)peak is exactly proportional to the one- A major advantage qby overgs can be seen in Fig.(6),
phase value ot f(t)(7.— 74)M _(&o+ IN)P" appearing which provides a log-log plot of the experimental
in Eq. (A4), with the proportionality constant being univer- (py,&4 /) curves in the one-phase region, along with the
sal. It is apparent, however, that the proportionality constanMC and RG curves of the mixture AC for comparison. Here,
between p_—ge)peak andc, f (t)(7.— 7q)M_(&. IN)P'”  finally, is a universal experimental ellipsometric curve, with
is approximatelyuniversal. In Fig. €a), for example, the the data for the four mixtures lying on top of each other for
maxima of IW and NH in the one-phase region are slightlyé/A<1 [50]. Perhaps the inaccuracies in the values of
greater than the maxima of AC and LW. If all four of these c, f(t)(7.— 74)M _(&o+ /\)?'” that were used are separat-
curves were divided by their respective maximum value, théng the curves in Figs. (@) and 9d), while (p— pgg) peakiS
curves would be shifted down without changing shape sucknown more accurately because it was determined from the
that the new values for all four maxima would be one. Sinceellipsometric data rather than the measured valueg, of
the IW and NH curves would be shifted down slightly more e,, ¢, (+,0), M_, and&,. . This does not explain Fig.
than the other two, their curves in the linedfX<1) region  6(d), however, which shows that the experimental
would end up slightly below the AC and LW curves. This is (py,£_/\) curves are quite spread out in the two-phase re-
exactly the situation in Fig.(@). Thus we conclude thaty is  gion. We do not yet understand the cause of the large spread
approximately universal foé/A<1 in the one-phase region in the experimental curves in Fig(d.
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